3,404 research outputs found

    Improving the key extraction performance of a simultaneous local key and chord estimation system

    Get PDF
    In this paper, significant improvements of a previously developed key and chord extraction system are proposed. The major improvement is the introduction of a separate acoustic model, designed to verify local key hypotheses. The conducted experimental evaluation shows that the presented system improves the state of the art in local key estimation. Our experimental study further demonstrates that the chord estimation performance is already quite robust, whereas the key estimation performance still happens to be sensitive to a number of factors. In particular, we present figures that illustrate the significant impact of the embedded musicological model and the duration of the processed excerpt on the key estimation accuracy

    Automatic chord transcription from audio using computational models of musical context

    Get PDF
    PhDThis thesis is concerned with the automatic transcription of chords from audio, with an emphasis on modern popular music. Musical context such as the key and the structural segmentation aid the interpretation of chords in human beings. In this thesis we propose computational models that integrate such musical context into the automatic chord estimation process. We present a novel dynamic Bayesian network (DBN) which integrates models of metric position, key, chord, bass note and two beat-synchronous audio features (bass and treble chroma) into a single high-level musical context model. We simultaneously infer the most probable sequence of metric positions, keys, chords and bass notes via Viterbi inference. Several experiments with real world data show that adding context parameters results in a significant increase in chord recognition accuracy and faithfulness of chord segmentation. The proposed, most complex method transcribes chords with a state-of-the-art accuracy of 73% on the song collection used for the 2009 MIREX Chord Detection tasks. This method is used as a baseline method for two further enhancements. Firstly, we aim to improve chord confusion behaviour by modifying the audio front end processing. We compare the effect of learning chord profiles as Gaussian mixtures to the effect of using chromagrams generated from an approximate pitch transcription method. We show that using chromagrams from approximate transcription results in the most substantial increase in accuracy. The best method achieves 79% accuracy and significantly outperforms the state of the art. Secondly, we propose a method by which chromagram information is shared between repeated structural segments (such as verses) in a song. This can be done fully automatically using a novel structural segmentation algorithm tailored to this task. We show that the technique leads to a significant increase in accuracy and readability. The segmentation algorithm itself also obtains state-of-the-art results. A method that combines both of the above enhancements reaches an accuracy of 81%, a statistically significant improvement over the best result (74%) in the 2009 MIREX Chord Detection tasks.Engineering and Physical Research Council U

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    Exploiting prior knowledge during automatic key and chord estimation from musical audio

    Get PDF
    Chords and keys are two ways of describing music. They are exemplary of a general class of symbolic notations that musicians use to exchange information about a music piece. This information can range from simple tempo indications such as “allegro” to precise instructions for a performer of the music. Concretely, both keys and chords are timed labels that describe the harmony during certain time intervals, where harmony refers to the way music notes sound together. Chords describe the local harmony, whereas keys offer a more global overview and consequently cover a sequence of multiple chords. Common to all music notations is that certain characteristics of the music are described while others are ignored. The adopted level of detail depends on the purpose of the intended information exchange. A simple description such as “menuet”, for example, only serves to roughly describe the character of a music piece. Sheet music on the other hand contains precise information about the pitch, discretised information pertaining to timing and limited information about the timbre. Its goal is to permit a performer to recreate the music piece. Even so, the information about timing and timbre still leaves some space for interpretation by the performer. The opposite of a symbolic notation is a music recording. It stores the music in a way that allows for a perfect reproduction. The disadvantage of a music recording is that it does not allow to manipulate a single aspect of a music piece in isolation, or at least not without degrading the quality of the reproduction. For instance, it is not possible to change the instrumentation in a music recording, even though this would only require the simple change of a few symbols in a symbolic notation. Despite the fundamental differences between a music recording and a symbolic notation, the two are of course intertwined. Trained musicians can listen to a music recording (or live music) and write down a symbolic notation of the played piece. This skill allows one, in theory, to create a symbolic notation for each recording in a music collection. In practice however, this would be too labour intensive for the large collections that are available these days through online stores or streaming services. Automating the notation process is therefore a necessity, and this is exactly the subject of this thesis. More specifically, this thesis deals with the extraction of keys and chords from a music recording. A database with keys and chords opens up applications that are not possible with a database of music recordings alone. On one hand, chords can be used on their own as a compact representation of a music piece, for example to learn how to play an accompaniment for singing. On the other hand, keys and chords can also be used indirectly to accomplish another goal, such as finding similar pieces. Because music theory has been studied for centuries, a great body of knowledge about keys and chords is available. It is known that consecutive keys and chords form sequences that are all but random. People happen to have certain expectations that must be fulfilled in order to experience music as pleasant. Keys and chords are also strongly intertwined, as a given key implies that certain chords will likely occur and a set of given chords implies an encompassing key in return. Consequently, a substantial part of this thesis is concerned with the question whether musicological knowledge can be embedded in a technical framework in such a way that it helps to improve the automatic recognition of keys and chords. The technical framework adopted in this thesis is built around a hidden Markov model (HMM). This facilitates an easy separation of the different aspects involved in the automatic recognition of keys and chords. Most experiments reviewed in the thesis focus on taking into account musicological knowledge about the musical context and about the expected chord duration. Technically speaking, this involves a manipulation of the transition probabilities in the HMMs. To account for the interaction between keys and chords, every HMM state is actually representing the combination of a key and a chord label. In the first part of the thesis, a number of alternatives for modelling the context are proposed. In particular, separate key change and chord change models are defined such that they closely mirror the way musicians conceive harmony. Multiple variants are considered that differ in the size of the context that is accounted for and in the knowledge source from which they were compiled. Some models are derived from a music corpus with key and chord notations whereas others follow directly from music theory. In the second part of the thesis, the contextual models are embedded in a system for automatic key and chord estimation. The features used in that system are so-called chroma profiles, which represent the saliences of the pitch classes in the audio signal. These chroma profiles are acoustically modelled by means of templates (idealised profiles) and a distance measure. In addition to these acoustic models and the contextual models developed in the first part, durational models are also required. The latter ensure that the chord and key estimations attain specified mean durations. The resulting system is then used to conduct experiments that provide more insight into how each system component contributes to the ultimate key and chord output quality. During the experimental study, the system complexity gets gradually increased, starting from a system containing only an acoustic model of the features that gets subsequently extended, first with duration models and afterwards with contextual models. The experiments show that taking into account the mean key and mean chord duration is essential to arrive at acceptable results for both key and chord estimation. The effect of using contextual information, however, is highly variable. On one hand, the chord change model has only a limited positive impact on the chord estimation accuracy (two to three percentage points), but this impact is fairly stable across different model variants. On the other hand, the chord change model has a much larger potential to improve the key output quality (up to seventeen percentage points), but only on the condition that the variant of the model is well adapted to the tested music material. Lastly, the key change model has only a negligible influence on the system performance. In the final part of this thesis, a couple of extensions to the formerly presented system are proposed and assessed. First, the global mean chord duration is replaced by key-chord specific values, which has a positive effect on the key estimation performance. Next, the HMM system is modified such that the prior chord duration distribution is no longer a geometric distribution but one that better approximates the observed durations in an appropriate data set. This modification leads to a small improvement of the chord estimation performance, but of course, it requires the availability of a suitable data set with chord notations from which to retrieve a target durational distribution. A final experiment demonstrates that increasing the scope of the contextual model only leads to statistically insignificant improvements. On top of that, the required computational load increases greatly

    Features for the classification and clustering of music in symbolic format

    Get PDF
    Tese de mestrado, Engenharia Informática, Universidade de Lisboa, Faculdade de Ciências, 2008Este documento descreve o trabalho realizado no âmbito da disciplina de Projecto em Engenharia Informática do Mestrado em Engenharia Informática da Faculdade de Ciências da Universidade de Lisboa. Recuperação de Informação Musical é, hoje em dia, um ramo altamente activo de investigação e desenvolvimento na área de ciência da computação, e incide em diversos tópicos, incluindo a classificação musical por géneros. O trabalho apresentado centra-se na Classificação de Pistas e de Géneros de música armazenada usando o formato MIDI. Para resolver o problema da classificação de pistas MIDI, extraimos um conjunto de descritores que são usados para treinar um classificador implementado através de uma técnica de Máquinas de Aprendizagem, Redes Neuronais, com base nas notas, e durações destas, que descrevem cada faixa. As faixas são classificadas em seis categorias: Melody (Melodia), Harmony (Harmonia), Bass (Baixo) e Drums (Bateria). Para caracterizar o conteúdo musical de cada faixa, um vector de descritores numérico, normalmente conhecido como ”shallow structure description”, é extraído. Em seguida, eles são utilizados no classificador — Neural Network — que foi implementado no ambiente Matlab. Na Classificação por Géneros, duas propostas foram usadas: Modelação de Linguagem, na qual uma matriz de transição de probabilidades é criada para cada tipo de pista midi (Melodia, Harmonia, Baixo e Bateria) e também para cada género; e Redes Neuronais, em que um vector de descritores numéricos é extraído de cada pista, e é processado num Classificador baseado numa Rede Neuronal. Seis Colectâneas de Musica no formato Midi, de seis géneros diferentes, Blues, Country, Jazz, Metal, Punk e Rock, foram formadas para efectuar as experiências. Estes géneros foram escolhidos por partilharem os mesmos instrumentos, na sua maioria, como por exemplo, baixo, bateria, piano ou guitarra. Estes géneros também partilham algumas características entre si, para que a classificação não seja trivial, e para que a robustez dos classificadores seja testada. As experiências de Classificação de Pistas Midi, nas quais foram testados, numa primeira abordagem, todos os descritores, e numa segunda abordagem, os melhores descritores, mostrando que o uso de todos os descritores é uma abordagem errada, uma vez que existem descritores que confundem o classificador. Provou-se que a melhor maneira, neste contexto, de se classificar estas faixas MIDI é utilizar descritores cuidadosamente seleccionados. As experiências de Classificação por Géneros, mostraram que os Classificadores por Instrumentos (Single-Instrument) obtiveram os melhores resultados. Quatro géneros, Jazz, Country, Metal e Punk, obtiveram resultados de classificação com sucesso acima dos 80% O trabalho futuro inclui: algoritmos genéticos para a selecção de melhores descritores; estruturar pistas e musicas; fundir todos os classificadores desenvolvidos num único classificador.This document describes the work carried out under the discipline of Computing Engineering Project of the Computer Engineering Master, Sciences Faculty of the Lisbon University. Music Information Retrieval is, nowadays, a highly active branch of research and development in the computer science field, and focuses several topics, including music genre classification. The work presented in this paper focus on Track and Genre Classification of music stored using MIDI format, To address the problem of MIDI track classification, we extract a set of descriptors that are used to train a classifier implemented by a Neural Network, based on the pitch levels and durations that describe each track. Tracks are classified into four classes: Melody, Harmony, Bass and Drums. In order to characterize the musical content from each track, a vector of numeric descriptors, normally known as shallow structure description, is extracted. Then they are used as inputs for the classifier which was implemented in the Matlab environment. In the Genre Classification task, two approaches are used: Language Modeling, in which a transition probabilities matrix is created for each type of track (Melody, Harmony, Bass and Drums) and also for each genre; and an approach based on Neural Networks, where a vector of numeric descriptors is extracted from each track (Melody, Harmony, Bass and Drums) and fed to a Neural Network Classifier. Six MIDI Music Corpora were assembled for the experiments, from six different genres, Blues, Country, Jazz, Metal, Punk and Rock. These genres were selected because all of them have the same base instruments, such as bass, drums, piano or guitar. Also, the genres chosen share some characteristics between them, so that the classification isn’t trivial, and tests the classifiers robustness. Track Classification experiments using all descriptors and best descriptors were made, showing that using all descriptors is a wrong approach, as there are descriptors which confuse the classifier. Using carefully selected descriptors proved to be the best way to classify these MIDI tracks. Genre Classification experiments showed that the Single-Instrument Classifiers achieved the best results. Four genres achieved higher than 80% success rates: Jazz, Country, Metal and Punk. Future work includes: genetic algorithms; structurize tracks and songs; merge all presented classifiers into one full Automatic Genre Classification System
    corecore