360 research outputs found

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System

    Towards Spatial Word Embeddings

    Get PDF
    Leveraging textual and spatial data provided in spatio-textual objects (eg., tweets), has become increasingly important in real-world applications, favoured by the increasing rate of their availability these last decades (eg., through smartphones). In this paper, we propose a spatial retrofitting method of word embeddings that could reveal the localised similarity of word pairs as well as the diversity of their localised meanings. Experiments based on the semantic location prediction task show that our method achieves significant improvement over strong baselines

    Hierarchical Transformer with Spatio-Temporal Context Aggregation for Next Point-of-Interest Recommendation

    Full text link
    Next point-of-interest (POI) recommendation is a critical task in location-based social networks, yet remains challenging due to a high degree of variation and personalization exhibited in user movements. In this work, we explore the latent hierarchical structure composed of multi-granularity short-term structural patterns in user check-in sequences. We propose a Spatio-Temporal context AggRegated Hierarchical Transformer (STAR-HiT) for next POI recommendation, which employs stacked hierarchical encoders to recursively encode the spatio-temporal context and explicitly locate subsequences of different granularities. More specifically, in each encoder, the global attention layer captures the spatio-temporal context of the sequence, while the local attention layer performed within each subsequence enhances subsequence modeling using the local context. The sequence partition layer infers positions and lengths of subsequences from the global context adaptively, such that semantics in subsequences can be well preserved. Finally, the subsequence aggregation layer fuses representations within each subsequence to form the corresponding subsequence representation, thereby generating a new sequence of higher-level granularity. The stacking of encoders captures the latent hierarchical structure of the check-in sequence, which is used to predict the next visiting POI. Extensive experiments on three public datasets demonstrate that the proposed model achieves superior performance whilst providing explanations for recommendations. Codes are available at https://github.com/JennyXieJiayi/STAR-HiT

    Leveraging multi-dimensional, multi-source knowledge for user preference modeling and event summarization in social media

    Get PDF
    An unprecedented development of various kinds of social media platforms, such as Twitter, Facebook and Foursquare, has been witnessed in recent years. This huge amount of user generated data are multi-dimensional in nature. Some dimensions are explicitly observed such as user profiles, text of social media posts, time, and location information. Others can be implicit and need to be inferred, reflecting the inherent structures of social media data. Examples include popular topics discussed in Twitter or Facebook, or the geographical clusters based on user check-in activities from Foursquare. It is of great interest to both research communities and commercial organizations to understand such heterogeneous data and leverage available information from multiple dimensions to facilitate social media applications, such as user preference modeling and event summarization. This dissertation first presents a general discriminative learning approach for modeling multi-dimensional knowledge in a supervised setting. A learning protocol is established to model both explicit and implicit knowledge in a unified manner, which applies to general classification/prediction tasks. This approach accommodates heterogeneous data dimensions with a significant boosted expressiveness of existing discriminative learning approaches. It stands out with its capability to model latent features, for which arbitrary generative assumptions are allowed. Besides the multi-dimensional nature, social media data are unstructured, fragmented and noisy. It makes social media data mining even more challenging that a lot of real applications come with no available annotation in an unsupervised setting. This dissertation addresses this issue from a novel angle: external sources such as news media and knowledge bases are exploited to provide supervision. I describe a unified framework which links traditional news data to Twitter and enables effective knowledge discovery such as event detection and summarization

    Hierarchical Attention Network for Visually-aware Food Recommendation

    Full text link
    Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance
    corecore