1,575 research outputs found

    ENSURING SPECIFICATION COMPLIANCE, ROBUSTNESS, AND SECURITY OF WIRELESS NETWORK PROTOCOLS

    Get PDF
    Several newly emerged wireless technologies (e.g., Internet-of-Things, Bluetooth, NFC)—extensively backed by the tech industry—are being widely adopted and have resulted in a proliferation of diverse smart appliances and gadgets (e.g., smart thermostat, wearables, smartphones), which has ensuingly shaped our modern digital life. These technologies include several communication protocols that usually have stringent requirements stated in their specifications. Failing to comply with such requirements can result in incorrect behaviors, interoperability issues, or even security vulnerabilities. Moreover, lack of robustness of the protocol implementation to malicious attacks—exploiting subtle vulnerabilities in the implementation—mounted by the compromised nodes in an adversarial environment can limit the practical utility of the implementation by impairing the performance of the protocol and can even have detrimental effects on the availability of the network. Even having a compliant and robust implementation alone may not suffice in many cases because these technologies often expose new attack surfaces as well as new propagation vectors, which can be exploited by unprecedented malware and can quickly lead to an epidemic

    Testing by Dualization

    Full text link
    Software engineering requires rigorous testing to guarantee the product's quality. Semantic testing of functional correctness is challenged by nondeterminism in behavior, which makes testers difficult to write and reason about. This thesis presents a language-based technique for testing interactive systems. I propose a theory for specifying and validating nondeterministic behaviors, with guaranteed soundness and correctness. I then apply the theory to testing practices, and show how to derive specifications into interactive tester programs. I also introduce a language design for producing test inputs that can effectively detect and reproduce invalid behaviors. I evaluate the methodology by specifying and testing real-world systems such as web servers and file synchronizers, demonstrating the derived testers' ability to find disagreements between the specification and the implementation

    The NASA computer science research program plan

    Get PDF
    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified

    The 4th Conference of PhD Students in Computer Science

    Get PDF

    The 11th Conference of PhD Students in Computer Science

    Get PDF

    Testing By Dualization

    Get PDF
    Software engineering requires rigorous testing to guarantee the product\u27s quality. Semantic testing of functional correctness is challenged by nondeterminism in behavior, which makes testers difficult to write and reason about. This thesis presents a language-based technique for testing interactive systems. I propose a theory for specifying and validating nondeterministic behaviors, with guaranteed soundness and correctness. I then apply the theory to testing practices, and show how to derive specifications into interactive tester programs. I also introduce a language design for producing test inputs that can effectively detect and reproduce invalid behaviors. I evaluate the methodology by specifying and testing real-world systems such as web servers and file synchronizers, demonstrating the derived testers\u27 ability to find disagreements between the specification and the implementation

    Cross-layer latency-aware and -predictable data communication

    Get PDF
    Cyber-physical systems are making their way into more aspects of everyday life. These systems are increasingly distributed and hence require networked communication to coordinatively fulfil control tasks. Providing this in a robust and resilient manner demands for latency-awareness and -predictability at all layers of the communication and computation stack. This thesis addresses how these two latency-related properties can be implemented at the transport layer to serve control applications in ways that traditional approaches such as TCP or RTP cannot. Thereto, the Predictably Reliable Real-time Transport (PRRT) protocol is presented, including its unique features (e.g. partially reliable, ordered, in-time delivery, and latency-avoiding congestion control) and unconventional APIs. This protocol has been intensively evaluated using the X-Lap toolkit that has been specifically developed to support protocol designers in improving latency, timing, and energy characteristics of protocols in a cross-layer, intra-host fashion. PRRT effectively circumvents latency-inducing bufferbloat using X-Pace, an implementation of the cross-layer pacing approach presented in this thesis. This is shown using experimental evaluations on real Internet paths. Apart from PRRT, this thesis presents means to make TCP-based transport aware of individual link latencies and increases the predictability of the end-to-end delays using Transparent Transmission Segmentation.Cyber-physikalische Systeme werden immer relevanter für viele Aspekte des Alltages. Sie sind zunehmend verteilt und benötigen daher Netzwerktechnik zur koordinierten Erfüllung von Regelungsaufgaben. Um dies auf eine robuste und zuverlässige Art zu tun, ist Latenz-Bewusstsein und -Prädizierbarkeit auf allen Ebenen der Informations- und Kommunikationstechnik nötig. Diese Dissertation beschäftigt sich mit der Implementierung dieser zwei Latenz-Eigenschaften auf der Transport-Schicht, sodass Regelungsanwendungen deutlich besser unterstützt werden als es traditionelle Ansätze, wie TCP oder RTP, können. Hierzu wird das PRRT-Protokoll vorgestellt, inklusive seiner besonderen Eigenschaften (z.B. partiell zuverlässige, geordnete, rechtzeitige Auslieferung sowie Latenz-vermeidende Staukontrolle) und unkonventioneller API. Das Protokoll wird mit Hilfe von X-Lap evaluiert, welches speziell dafür entwickelt wurde Protokoll-Designer dabei zu unterstützen die Latenz-, Timing- und Energie-Eigenschaften von Protokollen zu verbessern. PRRT vermeidet Latenz-verursachenden Bufferbloat mit Hilfe von X-Pace, einer Cross-Layer Pacing Implementierung, die in dieser Arbeit präsentiert und mit Experimenten auf realen Internet-Pfaden evaluiert wird. Neben PRRT behandelt diese Arbeit transparente Übertragungssegmentierung, welche dazu dient dem TCP-basierten Transport individuelle Link-Latenzen bewusst zu machen und so die Vorhersagbarkeit der Ende-zu-Ende Latenz zu erhöhen
    • …
    corecore