14,495 research outputs found

    Strategies for using remotely sensed data in hydrologic models

    Get PDF
    Present and planned remote sensing capabilities were evaluated. The usefulness of six remote sensing capabilities (soil moisture, land cover, impervious area, areal extent of snow cover, areal extent of frozen ground, and water equivalent of the snow cover) with seven hydrologic models (API, CREAMS, NWSRFS, STORM, STANFORD, SSARR, and NWSRFS Snowmelt) were reviewed. The results indicate remote sensing information has only limited value for use with the hydrologic models in their present form. With minor modifications to the models the usefulness would be enhanced. Specific recommendations are made for incorporating snow covered area measurements in the NWSRFS Snowmelt model. Recommendations are also made for incorporating soil moisture measurements in NWSRFS. Suggestions are made for incorporating snow covered area, soil moisture, and others in STORM and SSARR. General characteristics of a hydrologic model needed to make maximum use of remotely sensed data are discussed. Suggested goals for improvements in remote sensing for use in models are also established

    Analysis of information systems for hydropower operations

    Get PDF
    The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management

    Applications of aerospace technology in the public interest: Pollution measurement

    Get PDF
    This study of selected NASA contributions to the improvement of pollution measurement examines the pervasiveness and complexity of the economic, political, and social issues in the environmental field; provides a perspective on the relationship between the conduct of aerospace R and D and specific improvements in on site air pollution monitoring equipment now in use; describes the basic relationship between the development of satellite-based monitoring systems and their influence on long-term progress in improving environmental quality; and comments on how both instrumentation and satellite remote sensing are contributing to an improved environment. Examples of specific gains that have been made in applying aerospace R and D to environmental problem-solving are included

    An integrated study of earth resources in the State of California using remote sensing techniques

    Get PDF
    The author has identified the following significant results. The supply, demand, and impact relationships of California's water resources as exemplified by the Feather River project and other aspects of the California Water Plan are discussed

    Identifying Advantages and Disadvantages of Variable Rate Irrigation – An Updated Review

    Get PDF
    Variable rate irrigation (VRI) sprinklers on mechanical move irrigation systems (center pivot or lateral move) have been commercially available since 2004. Although the number of VRI, zone or individual sprinkler, systems adopted to date is lower than expected there is a continued interest to harness this technology, especially when climate variability, regulatory nutrient management, water conservation policies, and declining water for agriculture compound the challenges involved for irrigated crop production. This article reviews the potential advantages and potential disadvantages of VRI technology for moving sprinklers, provides updated examples on such aspects, suggests a protocol for designing and implementing VRI technology and reports on the recent advancements. The advantages of VRI technology are demonstrated in the areas of agronomic improvement, greater economic returns, environmental protection and risk management, while the main drawbacks to VRI technology include the complexity to successfully implement the technology and the lack of evidence that it assures better performance in net profit or water savings. Although advances have been made in VRI technologies, its penetration into the market will continue to depend on tangible and perceived benefits by producers

    Determination of anthropogenic changes on the urbanized territories using GIS technology

    Get PDF
    The research aim is to obtain a cartographic model of an urbanized territory by means of thermal survey in an infrared range. With this cartographic model, it will be then possible to reduce the zones in the urbanized territories differing in the level of superficial heat. Further, we will be able to reduce the proof thermal anomalies and thermal structures of the localities that are related to the natural and anthropogenic systems. On the examples of the cities of Ukraine – Energodar and Nikopol, we defined the sources of caloradiances from major industrial concerns as well as from thermal and nuclear power plants. For comparison, we built the model of thermal structure of the city of Tokai and the nuclear power plant with the same name Tokai (Japan). The sources of caloradiances can be, for example, pipes of thermal power stations, ponds-coolers, corps of steel-making production, and other similar objects. If the sizes of such source are known, then we are able to get the absolute values of temperatures
    corecore