2,926 research outputs found

    Improving the Computer Science in Bioinformatics Through Open Source Pedagogy

    Get PDF
    Bioinformatics relies more than ever on information technologies. This pressures scientists to keep up with software development best practices. However, traditional computer science curricula do not necessarily expose students to collaborative and long-lived software development. Using open source principles, practices, and tools forms an effective pedagogy for software development best practices. This paper reports on a bioinformatics teaching framework implemented through courses introducing computer science students to the field. The courses led to an initial product release consisting of software and an Escherichia coli K12 GenMAPP Gene Database, within a total incubation time of six months

    Improving the Computer Science in Bioinformatics Through Open Source Pedagogy

    Get PDF
    Bioinformatics relies more than ever on information technologies. This pressures scientists to keep up with software development best practices. However, traditional computer science curricula do not necessarily expose students to collaborative and long-lived software development. Using open source principles, practices, and tools forms an effective pedagogy for software development best practices. This paper reports on a bioinformatics teaching framework implemented through courses introducing computer science students to the field. The courses led to an initial product release consisting of software and an Escherichia coli K12 GenMAPP Gene Database, within a total incubation time of six months

    Breaking Boundaries in Computing in Undergraduate Courses

    Get PDF
    An important question in undergraduate curricula is that of incorporating computing into STEM courses for majors and non-majors alike. What does it mean to teach “computing” in this context? What are some of the benefits and challenges for students and instructors in such courses? This paper contributes to this important dialog by describing three undergraduate courses that have been developed and taught at Harvey Mudd College and Loyola Marymount University. Each case study describes the course objectives, implementation challenges, and assessments

    Subject benchmark statement: master's degrees in computing

    Get PDF

    Responsible research and innovation in science education: insights from evaluating the impact of using digital media and arts-based methods on RRI values

    Get PDF
    The European Commission policy approach of Responsible Research and Innovation (RRI) is gaining momentum in European research planning and development as a strategy to align scientific and technological progress with socially desirable and acceptable ends. One of the RRI agendas is science education, aiming to foster future generations' acquisition of skills and values needed to engage in society responsibly. To this end, it is argued that RRI-based science education can benefit from more interdisciplinary methods such as those based on arts and digital technologies. However, the evidence existing on the impact of science education activities using digital media and arts-based methods on RRI values remains underexplored. This article comparatively reviews previous evidence on the evaluation of these activities, from primary to higher education, to examine whether and how RRI-related learning outcomes are evaluated and how these activities impact on students' learning. Forty academic publications were selected and its content analysed according to five RRI values: creative and critical thinking, engagement, inclusiveness, gender equality and integration of ethical issues. When evaluating the impact of digital and arts-based methods in science education activities, creative and critical thinking, engagement and partly inclusiveness are the RRI values mainly addressed. In contrast, gender equality and ethics integration are neglected. Digital-based methods seem to be more focused on students' questioning and inquiry skills, whereas those using arts often examine imagination, curiosity and autonomy. Differences in the evaluation focus between studies on digital media and those on arts partly explain differences in their impact on RRI values, but also result in non-documented outcomes and undermine their potential. Further developments in interdisciplinary approaches to science education following the RRI policy agenda should reinforce the design of the activities as well as procedural aspects of the evaluation research

    “Beyond BIO2010: Celebration and Opportunities” at the Intersection of Mathematics and Biology

    Get PDF
    With this special edition of CBE-LSE, which focuses on connections between and integration of the biological and mathematical sciences, it is especially fitting that we report on an important symposium, Beyond BIO2010: Celebration and Opportunities,1 which was held at the National Acad- emy of Sciences (NAS) in Washington, D.C. on May 21–22, 2010. This symposium was organized to assess what progress has been made in addressing the challenges and recommendations in the National Research Council’s (NRC) report: BIO2010: Transforming Undergraduate Education for Future Research Biologists (NRC, 2003a). Most of the presen- tations and posters at this event emphasized the increasing connections of the life and mathematical sciences in under- graduate education. The symposium was initiated by the U.S. National Committee to the International Union of Bio- logical Sciences and was hosted by the National Academies’ Board on Life Sciences.

    The why, when, and how of computing in biology classrooms [version 1; peer review: 2 approved]

    Get PDF
    Many biologists are interested in teaching computing skills or using computing in the classroom, despite not being formally trained in these skills themselves. Thus biologists may find themselves researching how to teach these skills, and therefore many individuals are individually attempting to discover resources and methods to do so. Recent years have seen an expansion of new technologies to assist in delivering course content interactively. Educational research provides insights into how learners absorb and process information during interactive learning. In this review, we discuss the value of teaching foundational computing skills to biologists, and strategies and tools to do so. Additionally, we review the literature on teaching practices to support the development of these skills. We pay special attention to meeting the needs of diverse learners, and consider how different ways of delivering course content can be leveraged to provide a more inclusive classroom experience. Our goal is to enable biologists to teach computational skills and use computing in the classroom successfully
    • 

    corecore