144 research outputs found

    Spectral Efficiency of Multi-User Adaptive Cognitive Radio Networks

    Full text link
    In this correspondence, the comprehensive problem of joint power, rate, and subcarrier allocation have been investigated for enhancing the spectral efficiency of multi-user orthogonal frequency-division multiple access (OFDMA) cognitive radio (CR) networks subject to satisfying total average transmission power and aggregate interference constraints. We propose novel optimal radio resource allocation (RRA) algorithms under different scenarios with deterministic and probabilistic interference violation limits based on a perfect and imperfect availability of cross-link channel state information (CSI). In particular, we propose a probabilistic approach to mitigate the total imposed interference on the primary service under imperfect cross-link CSI. A closed-form mathematical formulation of the cumulative density function (cdf) for the received signal-to-interference-plus-noise ratio (SINR) is formulated to evaluate the resultant average spectral efficiency (ASE). Dual decomposition is utilized to obtain sub-optimal solutions for the non-convex optimization problems. Through simulation results, we investigate the achievable performance and the impact of parameters uncertainty on the overall system performance. Furthermore, we present that the developed RRA algorithms can considerably improve the cognitive performance whilst abide the imposed power constraints. In particular, the performance under imperfect cross-link CSI knowledge for the proposed `probabilistic case' is compared to the conventional scenarios to show the potential gain in employing this scheme

    Peak to average power ratio (PAPR) reduction technique in orthogonal frequency division multiplexing (OFDM) using block coding

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) signal is considered a good candidate for wireless systems because it offers diversity gain in frequency selective channels. As in other multicarrier schemes, however, OFDM suffers from high peak to average power ratio (PAPR). This is a major drawback of the scheme and ways of minimizing the PAPR have been researched. Block coding scheme is the technique to reduce the peak-to-average power ratio of OFDM signals and also to detect transmission errors. The reason is that in the time domain, a multicarrier signal is the sum of many narrowband signals. At some time instances, this sum is large and at other times is small, which means that the peak value of the signal is substantially larger than the average value. This high PAR is one of the most important implementation challenges that face OFDM, because it reduces the efficiency. The main purpose in this project, is to make a comparison over the PAPR reduction technique using block coding and without block coding. The capability of Block Coding scheme to reduce the Bit Error Rate (BER) in an OFDM system was also measured. The simulation developed in Matlab simulation environment

    Variable-rate, variable-power network-coded-QAM/PSK for bi-directional relaying over fading channels

    No full text
    Network coded modulation (NCM) holds the promise of significantly improving the efficiency of two-way wireless relaying. In this contribution, we propose near instantaneously adaptive variable-rate, variable-power QAM/PSK for NC-aided decode-and-forward two-way relaying (DF-TWR) to maximize the average throughput. The proposed scheme is optimized subject to both average-power and bit-error-ratio (BER) constraints. Based on the BER bounds, we investigate a discrete-rate adaptation scheme, relying on a pair of solutions proposed for maximizing the spectral efficiency of the network. We then derive a closed-form solution based power adaptation policy for a continuous-rate scheme and quantify the signal-to-noise ratio (SNR) loss imposed by NC-QAM. Our simulation results demonstrate that the proposed discrete adaptive NC-QAM/PSK schemes are capable of attaining a higher spectral efficiency than their fixed-power counterparts
    • …
    corecore