8 research outputs found

    Tradespace and Affordability – Phase 2

    Get PDF
    MOTIVATION AND CONTEXT: One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering – “SE Transformation.” The Grand Challenge goal for SE Transformation is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, outside-in, document-driven, point-solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-oriented, hardware-software-human engineered, balanced outside-in and inside-out, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project – Phase 4

    Get PDF
    This task was proposed and established as a result of a pair of 2012 workshops sponsored by the DoD Engineered Resilient Systems technology priority area and by the SERC. The workshops focused on how best to strengthen DoD’s capabilities in dealing with its systems’ non-functional requirements, often also called system qualities, properties, levels of service, and –ilities. The term –ilities was often used during the workshops, and became the title of the resulting SERC research task: “ilities Tradespace and Affordability Project (iTAP).” As the project progressed, the term “ilities” often became a source of confusion, as in “Do your results include considerations of safety, security, resilience, etc., which don’t have “ility” in their names?” Also, as our ontology, methods, processes, and tools became of interest across the DoD and across international and standards communities, we found that the term “System Qualities” was most often used. As a result, we are changing the name of the project to “System Qualities Ontology, Tradespace, and Affordability (SQOTA).” Some of this year’s university reports still refer to the project as “iTAP.”This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004

    Analyzing impact of experience curve on ROI in the software product line adoption process

    Get PDF
    Cataloged from PDF version of article.Context: Experience curve is a well-known concept in management and education science, which explains the phenomenon of increased worker efficiency with repetitive production of a good or service. Objective: We aim to analyze the impact of the experience curve effect on the Return on Investment (ROI) in the software product line engineering (SPLE) process. Method: We first present the results of a systematic literature review (SLR) to explicitly depict the studies that have considered the impact of experience curve effect on software development in general. Subsequently, based on the results of the SLR, the experience curve effect models in the literature, and the SPLE cost models, we define an approach for extending the cost models with the experience curve effect. Finally, we discuss the application of the refined cost models in a real industrial context. Results: The SLR resulted in 15 primary studies which confirm the impact of experience curve effect on software development in general but the experience curve effect in the adoption of SPLE got less attention. The analytical discussion of the cost models and the application of the refined SPLE cost models in the industrial context showed a clear impact of the experience curve effect on the time-to-market, cost of development and ROI in the SPLE adoption process. Conclusions: The proposed analysis with the newly defined cost models for SPLE adoption provides a more precise analysis tool for the management, and as such helps to support a better decision making. © 2014 Elsevier B.V. All rights reserved

    Tradespace and Affordability – Phase 1

    Get PDF
    One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering – “SE Transformation.” The Grand Challenge goal for SE Transformation is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, outside-in, document-driven, point-solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-oriented, hardware-software-human engineered, balanced outside-in and inside-out, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    -ilities Tradespace and Affordability Project – Phase 3

    Get PDF
    One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering and associated management practices – “SE and Management Transformation (SEMT).” The Grand Challenge goal for SEMT is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, document-driven, point- solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise- oriented, hardware-software-human engineered, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    Monte Carlo Tree Search for Feature Model Analyses: a General Framework for Decision-Making

    Get PDF
    The colossal solution spaces of most configurable systems make intractable their exhaustive exploration. Accordingly, relevant anal-yses remain open research problems. There exist analyses alterna-tives such as SAT solving or constraint programming. However, none of them have explored simulation-based methods. Monte Carlo-based decision making is a simulation based method for deal-ing with colossal solution spaces using randomness. This paper proposes a conceptual framework that tackles various of those anal-yses using Monte Carlo methods, which have proven to succeed in vast search spaces (e.g., game theory). Our general framework is described formally, and its flexibility to cope with a diversity of analysis problemsis discussed (e.g., finding defective configurations, feature model reverse engineering or getting optimal performance configurations). Additionally, we present a Python implementation of the framework that shows the feasibility of our proposal. With this contribution, we envision that different problems can be ad dressed using Monte Carlo simulations and that our framework can be used to advance the state of the art a step forward.Ministerio de Economía y Competitividad RTI2018-101204-B-C22 (OPHELIA

    Elaboración de métricas basada en un framework de atributos para líneas de productos

    Get PDF
    Una línea de productos es un conjunto de productos relacionados que comparten unas características comunes, así como una variabilidad. Lo anterior facilita la producción masiva de dichos productos además de su adaptación a requisitos particulares. La ingeniería de líneas de productos es un paradigma de producción que permite la personalización masiva de productos. Esto ayuda a una mayor reutilización de componentes, a disminuir el tiempo de desarrollo y a mejorar la calidad final de los productos. Como en cualquier rama de la ingeniería, en la ingeniería de líneas de productos la medición juega un papel clave. Esto permite una mejor gestión de los procesos y los recursos requeridos por estos, así como monitorear la calidad de los productos. Este proceso se implementa mediante el uso de métricas, que permiten tener una medida cuantitativa del grado en el que un sistema, componente o proceso poseen un atributo dado (como costo, mantenibilidad o complejidad). Sin embargo; ni la comunidad académica ni la industria, cuentan con un framework para la aplicación de métricas en líneas de productos. Además, en la ingeniería en general y particularmente en la ingeniería de software, no existe un consenso en la terminología ni en una metodología de medición. Todo esto lleva a que se presenten dificultades, tanto para la definición como para la validación de métricas, en la ingeniería de software y en la ingeniería de líneas de productos. Durante el desarrollo del presente trabajo se propone un framework de medición, enfocado en los atributos, para la ingeniería de líneas de productos. También se define un conjunto de métricas con base en dicho framework. El trabajo propuesto comprende un mapeo sistemático de la literatura sobre la medición en la ingeniería de líneas de productos, un framework de medición centrado en un conjunto de atributos extraídos de la ingeniería de líneas de productos, un conjunto de métricas para líneas de productos y la correspondiente validación de dichas métricas con un análisis teórico.Abstract: A product line is a set of related products that share some common features and variable ones. It allows the massive production of those products besides their adaptation to particular requirements. Product line engineering is a production paradigm that implies mass customization of products. It helps to a greater reuse of components, to decrease the time of development and to improve the final quality of products. Like in any other engineering branch, in product line engineering measurement has a key role. It allows a better management of the processes and the resources required by them, as well as to monitor the quality of the products. This process is implemented through the use of metrics, which allow to have a quantitative measure of the degree in which a system, component or process possesses a given attribute (like cost, maintainability or complexity). However, neither the academy nor the industry have a framework for using metrics in product lines. Although, in engineering but mainly in software engineering, there is not a consensus in a measurement terminology or in a measurement methodology. All this has led to some difficulties in the definition and the validation of metrics in software engineering and in product line engineering. In this work, we propose a measurement framework for product line engineering focused on attributes. We also define a set of metrics based on this framework. The proposed work includes a systematic mapping about measurement in product line engineering, a measurement framework focused on the attributes of the product lines, a set of metrics for product lines and the validation of those metrics with a theoretical analysis.Maestrí

    Volume II Acquisition Research Creating Synergy for Informed Change, Thursday 19th Annual Acquisition Research Proceedings

    Get PDF
    ProceedingsApproved for public release; distribution is unlimited
    corecore