20 research outputs found

    Network reputation-based quality optimization of video delivery in heterogeneous wireless environments

    Get PDF
    The mass-market adoption of high-end mobile devices and increasing amount of video traffic has led the mobile operators to adopt various solutions to help them cope with the explosion of mobile broadband data traffic, while ensuring high Quality of Service (QoS) levels to their services. Deploying small-cell base stations within the existing macro-cellular networks and offloading traffic from the large macro-cells to the small cells is seen as a promising solution to increase capacity and improve network performance at low cost. Parallel use of diverse technologies is also employed. The result is a heterogeneous network environment (HetNets), part of the next generation network deployments. In this context, this thesis makes a step forward towards the “Always Best Experience” paradigm, which considers mobile users seamlessly roaming in the HetNets environment. Supporting ubiquitous connectivity and enabling very good quality of rich mobile services anywhere and anytime is highly challenging, mostly due to the heterogeneity of the selection criteria, such as: application requirements (e.g., voice, video, data, etc.); different device types and with various capabilities (e.g., smartphones, netbooks, laptops, etc.); multiple overlapping networks using diverse technologies (e.g., Wireless Local Area Networks (IEEE 802.11), Cellular Networks Long Term Evolution (LTE), etc.) and different user preferences. In fact, the mobile users are facing a complex decision when they need to dynamically select the best value network to connect to in order to get the “Always Best Experience”. This thesis presents three major contributions to solve the problem described above: 1) The Location-based Network Prediction mechanism in heterogeneous wireless networks (LNP) provides a shortlist of best available networks to the mobile user based on his location, history record and routing plan; 2) Reputation-oriented Access Network Selection mechanism (RANS) selects the best reputation network from the available networks for the mobile user based on the best trade-off between QoS, energy consumptions and monetary cost. The network reputation is defined based on previous user-network interaction, and consequent user experience with the network. 3) Network Reputation-based Quality Optimization of Video Delivery in heterogeneous networks (NRQOVD) makes use of a reputation mechanism to enhance the video content quality via multipath delivery or delivery adaptation

    Heterogeneous Wireless Networks QoE Framework

    Get PDF
    With the appearance of small cells and the move of mobile networks towards an all-IP 4G network, the convergence of these with Wi-Fi becomes a possibility which at the same time opens the path to achieve what will become 5G connectivity. This thesis describes the evolution of the different mainstream wireless technologies deployed around the world and how they can interact, and provides tools to use this convergence to achieve the foreseen requirements expected in a 5G environment and the ideal user experience. Several topics were identified as needing attention: handover between heterogeneous networks, security of large numbers of small cells connected via a variety of backhaul technologies to the core networks, edge content distribution to improve latency, improvement of the service provided in challenging radio environments and interference between licensed and unlicensed spectrum. Within these topics a contribution was made to improve the current status by analysing the unaddressed issues and coming up with potential improvements that were tested in trials or lab environment. The main contributions from the study have been: 1. A patent in the wireless security domain that reuses the fact that overlapping coverage is and will be available and protects against man in the middle attacks (Section 5.3). 2. A patent in the content distribution domain that manages to reduce the cost to deliver content within a mobile network by looking for the shortest path to the requested content (Section 6.3). 3. Improvements and interoperability test of 802.21 standard which improves the seamlessness of handovers (Section 4.2). 4. 2 infill trials which focus on how to improve the user experience in those challenging conditions (Sections 7.2 and 7.3). 5. An interference study with Wi-Fi 2.4GHz for the newly allocated spectrum for 4G (Section 8.2). This thesis demonstrates some of the improvements required in current wireless networks to evolve towards 5G and achieve the coverage, service, user experience, latency and security requirements expected from the next generation mobile technology

    Mobility management in 5G heterogeneous networks

    Get PDF
    In recent years, mobile data traffic has increased exponentially as a result of widespread popularity and uptake of portable devices, such as smartphones, tablets and laptops. This growth has placed enormous stress on network service providers who are committed to offering the best quality of service to consumer groups. Consequently, telecommunication engineers are investigating innovative solutions to accommodate the additional load offered by growing numbers of mobile users. The fifth generation (5G) of wireless communication standard is expected to provide numerous innovative solutions to meet the growing demand of consumer groups. Accordingly the ultimate goal is to achieve several key technological milestones including up to 1000 times higher wireless area capacity and a significant cut in power consumption. Massive deployment of small cells is likely to be a key innovation in 5G, which enables frequent frequency reuse and higher data rates. Small cells, however, present a major challenge for nodes moving at vehicular speeds. This is because the smaller coverage areas of small cells result in frequent handover, which leads to lower throughput and longer delay. In this thesis, a new mobility management technique is introduced that reduces the number of handovers in a 5G heterogeneous network. This research also investigates techniques to accommodate low latency applications in nodes moving at vehicular speeds

    New Threats and Innovative Protection Methods in Wireless Transmission Systems, Journal of Telecommunications and Information Technology, 2014, nr 3

    Get PDF
    Many improvements in the field of wireless communication can be observed nowadays. Some developments are gradual, others are revolutionary. It is obvious that each innovation in the area may lead to new security threats and vulnerabilities. Such technologies and transmission methods as: Near Field Communication (NFC), Visible Light Communication (VLC), handover, mesh networks, 5G cellular network, mobile IPv6, beamforming, cooperative beamforming, Multiple Input Multiple Output (MIMO), Orthogonal Frequency Division Multiple Access (OFDMA), transmission in Extra High Frequency (EHF) band are very important from the security point of view. In order to preserve high level of security one needs to identify, analyse and classify distinctive sets of threats and vulnerabilities as well as some emerging data protection opportunities related to innovative wireless transmission methods and technologies. This identification, analysis and classification is a main purpose of the paper. It will focus on cryptography in wireless systems, security vs. energy tradeoffs, physical layer security. For example, common problems related to cryptography may be solved with a use of physical layer security. Data confidentiality may be fulfilled with a use of beamforming and jamming, authentication may be performed with a use of out-of-band authentication model

    A novel MAC Protocol for Cognitive Radio Networks

    Get PDF
    In Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy from the University of BedfordshireThe scarcity of bandwidth in the radio spectrum has become more vital since the demand for wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum bands and the inefficiency in their utilization have been smartly addressed by the cognitive radio (CR) technology which is an opportunistic network that senses the environment, observes the network changes, and then uses knowledge gained from the prior interaction with the network to make intelligent decisions by dynamically adapting transmission characteristics. In this thesis, recent research and survey about the advances in theory and applications of cognitive radio technology has been reviewed. The thesis starts with the essential background on cognitive radio techniques and systems and discusses those characteristics of CR technology, such as standards, applications and challenges that all can help make software radio more personal. It then presents advanced level material by extensively reviewing the work done so far in the area of cognitive radio networks and more specifically in medium access control (MAC) protocol of CR. The list of references will be useful to both researchers and practitioners in this area. Also, it can be adopted as a graduate-level textbook for an advanced course on wireless communication networks. The development of new technologies such as Wi-Fi, cellular phones, Bluetooth, TV broadcasts and satellite has created immense demand for radio spectrum which is a limited natural resource ranging from 30KHz to 300GHz. For every wireless application, some portion of the radio spectrum needs to be purchased, and the Federal Communication Commission (FCC) allocates the spectrum for some fee for such services. This static allocation of the radio spectrum has led to various problems such as saturation in some bands, scarcity, and lack of radio resources to new wireless applications. Most of the frequencies in the radio spectrum have been allocated although many studies have shown that the allocated bands are not being used efficiently. The CR technology is one of the effective solutions to the shortage of spectrum and the inefficiency of its utilization. In this thesis, a detailed investigation on issues related to the protocol design for cognitive radio networks with particular emphasis on the MAC layer is presented. A novel Dynamic and Decentralized and Hybrid MAC (DDH-MAC) protocol that lies between the CR MAC protocol families of globally available common control channel (GCCC) and local control channel (non-GCCC). First, a multi-access channel MAC protocol, which integrates the best features of both GCCC and non-GCCC, is proposed. Second, an enhancement to the protocol is proposed by enabling it to access more than one control channel at the same time. The cognitive users/secondary users (SUs) always have access to one control channel and they can identify and exploit the vacant channels by dynamically switching across the different control channels. Third, rapid and efficient exchange of CR control information has been proposed to reduce delays due to the opportunistic nature of CR. We have calculated the pre-transmission time for CR and investigate how this time can have a significant effect on nodes holding a delay sensitive data. Fourth, an analytical model, including a Markov chain model, has been proposed. This analytical model will rigorously analyse the performance of our proposed DDH-MAC protocol in terms of aggregate throughput, access delay, and spectrum opportunities in both the saturated and non-saturated networks. Fifth, we develop a simulation model for the DDH-MAC protocol using OPNET Modeler and investigate its performance for queuing delays, bit error rates, backoff slots and throughput. It could be observed from both the numerical and simulation results that when compared with existing CR MAC protocols our proposed MAC protocol can significantly improve the spectrum utilization efficiency of wireless networks. Finally, we optimize the performance of our proposed MAC protocol by incorporating multi-level security and making it energy efficient

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Specification of Cooperative Access Points Functionalities version 1

    Get PDF
    The What to do With the Wi-Fi Wild West H2020 project (Wi-5) combines research and innovation to propose an architecture based on an integrated and coordinated set of smart Wi-Fi networking solutions. The resulting system will be able to efficiently reduce interference between neighbouring Access Points (APs) and provide optimised connectivity for new and emerging services. The project approach is expected to develop and incorporate a variety of different solutions, which will be made available through academic publications, in addition to other dissemination channels. The present document includes the specification of the first version of the Cooperative AP Functionalities, which are being defined within Work Package (WP) 4 of the Wi-5 project. In this deliverable after the Executive Summary and the literature review, the first version of the Cooperative Access Point Solutions are illustrated. In particular, a section with a general cooperative framework that jointly includes functionalities for an optimized AP channel assignment, Radio Resource Management (RRM) and smart AP allocation is presented. The optimized APs channel assignment enables an important improvement of the network performance in terms of SINR. Furthermore, the results analysed in this deliverable validate the flexibility and practicality of the proposed algorithm in different scenarios. The smart AP allocation solution introduces the innovative Fittingness Factor (FF) concept that efficiently matches the suitability of the available spectrum resource to the application requirements. Moreover, the basis required for a seamless mobility functionality in the framework is also included in the section. Next, a first assessment of the algorithms proposed in this deliverable is presented through the analysis of several performance results in a simulated environment. In detail, the AP channel assignment and the smart AP allocation algorithms are assessed and compared against other strategies found in the literature. Finally, a set of monitoring procedures to be conducted on the Wi-5 APs and on the Wi-5 controller are presented. These procedures will allow the correct deployment of the cooperative APs functionalities proposed in this deliverable. After summarising the main conclusions, the document ends with future work

    Analysis, design and experimental evaluation of connectivity management in heterogeneous wireless environments

    Get PDF
    Mención Internacional en el título de doctorThe future of network communications is mobile as many more users demand for ubiquitous connectivity. Wireless has become the primary access technology or even the only one, leading to an explosion in traffic demand. This challenges network providers to manage and configure new requirements without incrementing costs in the same amount. In addition to the growth in the use of mobile devices, there is a need to operate simultaneously different access technologies. As well, the great diversity of applications and the capabilities of mobile terminals makes possible for us to live in a hyper-connected world and offers new scenarios. This heterogeneity poses great challenges that need to be addressed to offer better performance and seamless experience to the final user. We need to orchestrate solutions to increase flexibility and empower interoperability. Connectivity management is handled from different angles. In the network stack, mobility is more easily handled by IP mobility protocols, since IP is the common layer between the different access technologies and the application diversity. From the end-user perspective, the connection manager is in charge of handling connectivity issues in mobile devices, but it is an unstandardized entity so its performance is heavily implementation-dependent. In this thesis we explore connectivity management from different angles. We study mobility protocols as they are part of our proposed solutions. In most of the cases we include an experimental evaluation of performance with 3G and IEEE 802.11 as the main technologies. We consider heterogeneous scenarios, with several access technologies where mobile devices have also several network interfaces. We evaluate how connectivity is handled as well as its influence in a handover. Based on the analysis of real traces from a cellular network, we confirm the suitability of more efficient mobility management. Moreover, we propose and evaluate three different solutions for providing mobility support in three different heterogeneous scenarios. We perform an experimental evaluation of a vehicular route optimization for network mobility, reporting on the challenges and lessons learned in such a complicated networking environment. We propose an architecture for supporting mobility and enhance handover in a passive optical network deployment. In addition, we design and deploy a mechanism for mobility management based on software-defined networking.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Arturo Azcorra Saloña.- Secretario: Ramón Agüero Calvo.- Vocal: Daniel Nunes Coruj

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing
    corecore