1,070 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Knowledge visualization: From theory to practice

    Get PDF
    Visualizations have been known as efficient tools that can help users analyze com- plex data. However, understanding the displayed data and finding underlying knowl- edge is still difficult. In this work, a new approach is proposed based on understanding the definition of knowledge. Although there are many definitions used in different ar- eas, this work focuses on representing knowledge as a part of a visualization and showing the benefit of adopting knowledge representation. Specifically, this work be- gins with understanding interaction and reasoning in visual analytics systems, then a new definition of knowledge visualization and its underlying knowledge conversion processes are proposed. The definition of knowledge is differentiated as either explicit or tacit knowledge. Instead of directly representing data, the value of the explicit knowledge associated with the data is determined based on a cost/benefit analysis. In accordance to its importance, the knowledge is displayed to help the user under- stand the complex data through visual analytical reasoning and discovery

    Contributions to the cornerstones of interaction in visualization: strengthening the interaction of visualization

    Get PDF
    Visualization has become an accepted means for data exploration and analysis. Although interaction is an important component of visualization approaches, current visualization research pays less attention to interaction than to aspects of the graphical representation. Therefore, the goal of this work is to strengthen the interaction side of visualization. To this end, we establish a unified view on interaction in visualization. This unified view covers four cornerstones: the data, the tasks, the technology, and the human.Visualisierung hat sich zu einem unverzichtbaren Werkzeug für die Exploration und Analyse von Daten entwickelt. Obwohl Interaktion ein wichtiger Bestandteil solcher Werkzeuge ist, wird der Interaktion in der aktuellen Visualisierungsforschung weniger Aufmerksamkeit gewidmet als Aspekten der graphischen Repräsentation. Daher ist es das Ziel dieser Arbeit, die Interaktion im Bereich der Visualisierung zu stärken. Hierzu wird eine einheitliche Sicht auf Interaktion in der Visualisierung entwickelt

    BI-LAVA: Biocuration with Hierarchical Image Labeling through Active Learning and Visual Analysis

    Full text link
    In the biomedical domain, taxonomies organize the acquisition modalities of scientific images in hierarchical structures. Such taxonomies leverage large sets of correct image labels and provide essential information about the importance of a scientific publication, which could then be used in biocuration tasks. However, the hierarchical nature of the labels, the overhead of processing images, the absence or incompleteness of labeled data, and the expertise required to label this type of data impede the creation of useful datasets for biocuration. From a multi-year collaboration with biocurators and text-mining researchers, we derive an iterative visual analytics and active learning strategy to address these challenges. We implement this strategy in a system called BI-LAVA Biocuration with Hierarchical Image Labeling through Active Learning and Visual Analysis. BI-LAVA leverages a small set of image labels, a hierarchical set of image classifiers, and active learning to help model builders deal with incomplete ground-truth labels, target a hierarchical taxonomy of image modalities, and classify a large pool of unlabeled images. BI-LAVA's front end uses custom encodings to represent data distributions, taxonomies, image projections, and neighborhoods of image thumbnails, which help model builders explore an unfamiliar image dataset and taxonomy and correct and generate labels. An evaluation with machine learning practitioners shows that our mixed human-machine approach successfully supports domain experts in understanding the characteristics of classes within the taxonomy, as well as validating and improving data quality in labeled and unlabeled collections.Comment: 15 pages, 6 figure

    KOLAM : human computer interfaces fro visual analytics in big data imagery

    Get PDF
    In the present day, we are faced with a deluge of disparate and dynamic information from multiple heterogeneous sources. Among these are the big data imagery datasets that are rapidly being generated via mature acquisition methods in the geospatial, surveillance (specifically, Wide Area Motion Imagery or WAMI) and biomedical domains. The need to interactively visualize these imagery datasets by using multiple types of views (as needed) into the data is common to these domains. Furthermore, researchers in each domain have additional needs: users of WAMI datasets also need to interactively track objects of interest using algorithms of their choice, visualize the resulting object trajectories and interactively edit these results as needed. While software tools that fulfill each of these requirements individually are available and well-used at present, there is still a need for tools that can combine the desired aspects of visualization, human computer interaction (HCI), data analysis, data management, and (geo-)spatial and temporal data processing into a single flexible and extensible system. KOLAM is an open, cross-platform, interoperable, scalable and extensible framework for visualization and analysis that we have developed to fulfil the above needs. The novel contributions in this thesis are the following: 1) Spatio-temporal caching for animating both giga-pixel and Full Motion Video (FMV) imagery, 2) Human computer interfaces purposefully designed to accommodate big data visualization, 3) Human-in-the-loop interactive video object tracking - ground-truthing of moving objects in wide area imagery using algorithm assisted human-in-the-loop coupled tracking, 4) Coordinated visualization using stacked layers, side-by-side layers/video sub-windows and embedded imagery, 5) Efficient one-click manual tracking, editing and data management of trajectories, 6) Efficient labeling of image segmentation regions and passing these results to desired modules, 7) Visualization of image processing results generated by non-interactive operators using layers, 8) Extension of interactive imagery and trajectory visualization to multi-monitor wall display environments, 9) Geospatial applications: Providing rapid roam, zoom and hyper-jump spatial operations, interactive blending, colormap and histogram enhancement, spherical projection and terrain maps, 10) Biomedical applications: Visualization and target tracking of cell motility in time-lapse cell imagery, collecting ground-truth from experts on whole-slide imagery (WSI) for developing histopathology analytic algorithms and computer-aided diagnosis for cancer grading, and easy-to-use tissue annotation features.Includes bibliographical reference
    • …
    corecore