1,238 research outputs found

    The Transitivity of Trust Problem in the Interaction of Android Applications

    Full text link
    Mobile phones have developed into complex platforms with large numbers of installed applications and a wide range of sensitive data. Application security policies limit the permissions of each installed application. As applications may interact, restricting single applications may create a false sense of security for the end users while data may still leave the mobile phone through other applications. Instead, the information flow needs to be policed for the composite system of applications in a transparent and usable manner. In this paper, we propose to employ static analysis based on the software architecture and focused data flow analysis to scalably detect information flows between components. Specifically, we aim to reveal transitivity of trust problems in multi-component mobile platforms. We demonstrate the feasibility of our approach with Android applications, although the generalization of the analysis to similar composition-based architectures, such as Service-oriented Architecture, can also be explored in the future

    Transparent and adaptive application partitioning using mobile objects

    Get PDF
    The dynamic nature and heterogeneity of modern execution environments such as mobile, ubiquitous, and grid computing, present major challenges for the development and efficient execution of the applications targeted for these environments. In particular, applications tailored to run in a specific environment will show different and most likely sub-optimal behaviour when executed on a different and/or dynamic environment. Consequently, there has been growing interests in the area of application adaptation which aims to enable applications to cope with the varying execution environments. Adaptive application partitioning, a specific form of non-functional adaptation involving distribution of mobile objects across multiple host machines, is of particular interest to this thesis due to the diversity of its uses. In this approach, certain runtime information (known as context) is used to allow an object-oriented application to adaptively (re)adjust the placement of its objects during its execution, for purposes such as improving application performance and reliability as well as balancing resource utilisation across machines. Promoting the adoption of such adaptation requires a process that requires minimal human involvement in both the execution and the development of the relevant application. These challenges establish the main goals and contributions of this work, which include: 1) Proposing an effective application partitioning solution via the adoption of a decentralised adaptation strategy known as local adaptation. 2) Enabling adaptive application partitioning which does not require human intervention, through automatic collection of required information/context. 3) Proposing a solution for transparently injecting the required adaptation functionality into regular object-oriented applications allowing significant reduction of the associated development cost/effort. The proposed solutions have been implemented in a Java-based adaptation framework called MobJeX. This implementation, which was used as a test bed for the empirical experiments undertaken in this study, can be used to facilitate future research relevant to this particular study

    On The General Applicability of Instruction-Set Randomization

    Get PDF
    We describe Instruction-Set Randomization (ISR), a general approach for safeguarding systems against any type of code-injection attack. We apply Kerckhoffs' principle to create OS process-specific randomized instruction sets (e.g., machine instructions) of the system executing potentially vulnerable software. An attacker who does not know the key to the randomization algorithm will inject code that is invalid for that (randomized) environment, causing a runtime exception. Our approach is applicable to machine-language programs and scripting and interpreted languages. We discuss three approaches (protection for Intel x86 executables, Perl scripts, and SQL queries), one from each of the above categories. Our goal is to demonstrate the generality and applicability of ISR as a protection mechanism. Our emulator-based prototype demonstrates the feasibility ISR for x86 executables and should be directly usable on a suitably modified processor. We demonstrate how to mitigate the significant performance impact of emulation-based ISR by using several heuristics to limit the scope of randomized (and interpreted) execution to sections of code that may be more susceptible to exploitation. The SQL prototype consists of an SQL query-randomizing proxy that protects against SQL injection attacks with no changes to database servers, minor changes to CGI scripts, and with negligible performance overhead. Similarly, the performance penalty of a randomized Perl interpreter is minimal. Where the performance impact of our proposed approach is acceptable (i.e., in an already-emulated environment, in the presence of programmable or specialized hardware, or in interpreted languages), it can serve as a broad protection mechanism and complement other security mechanisms

    UNCOVERING AND MITIGATING UNSAFE PROGRAM INTEGRATIONS IN ANDROID

    Get PDF
    Android’s design philosophy encourages the integration of resources and functionalities from multiple parties, even with different levels of trust. Such program integrations, on one hand, connect every party in the Android ecosystem tightly on one single device. On the other hand, they can also pose severe security problems, if the security design of the underlying integration schemes is not well thought-out. This dissertation systematically evaluates the security design of three integration schemes on Android, including framework module, framework proxy and 3rd-party code embedding. With the security risks identified in each scheme, it concludes that program integrations on Android are unsafe. Furthermore, new frameworks have been designed and implemented to detect and mitigate the threats. The evaluation results on the prototypes have demonstrated their effectiveness

    Cyber Attack Surface Mapping For Offensive Security Testing

    Get PDF
    Security testing consists of automated processes, like Dynamic Application Security Testing (DAST) and Static Application Security Testing (SAST), as well as manual offensive security testing, like Penetration Testing and Red Teaming. This nonautomated testing is frequently time-constrained and difficult to scale. Previous literature suggests that most research is spent in support of improving fully automated processes or in finding specific vulnerabilities, with little time spent improving the interpretation of the scanned attack surface critical to nonautomated testing. In this work, agglomerative hierarchical clustering is used to compress the Internet-facing hosts of 13 representative companies as collected by the Shodan search engine, resulting in an average 89% reduction in attack surface complexity. The work is then extended to map network services and also analyze the characteristics of the Log4Shell security vulnerability and its impact on attack surface mapping. The results highlighted outliers indicative of possible anti-patterns as well as opportunities to improve how testers and tools map the web attack surface. Ultimately the work is extended to compress web attack surfaces based on security relevant features, demonstrating via accuracy measurements not only that this compression is feasible but can also be automated. In the process a framework is created which could be extended in future work to compress other attack surfaces, including physical structures/campuses for physical security testing and even humans for social engineering tests
    • …
    corecore