7,016 research outputs found

    High accuracy computation with linear analog optical systems: a critical study

    Get PDF
    High accuracy optical processors based on the algorithm of digital multiplication by analog convolution (DMAC) are studied for ultimate performance limitations. Variations of optical processors that perform high accuracy vector-vector inner products are studied in abstract and with specific examples. It is concluded that the use of linear analog optical processors in performing digital computations with DMAC leads to impractical requirements for the accuracy of analog optical systems and the complexity of postprocessing electronics

    Sample medium-term plans for mathematics

    Get PDF

    Evaluation of High Speed Hardware Multipliers - Fixed Point and Floating point

    Get PDF
    There is a huge demand in high speed arithmetic blocks, due to increased performance of processing units. For higher frequency clocks of the system, the arithmetic blocks must keep pace with greater requirement of more computational power. Area and speed are usually conflicting constraints so that improving speed results mostly in larger areas. In our research we will try to determine the best solution to this problem by comparing the results of different multipliers. Different sized of two algorithms for high speed hardware multipliers were studied and implemented ie. Parallel multiplier, Bit serial multiplier. The workings of these two multipliers were compared by implementing each of them separately in VHDL. A number of high speed adder designs are developed and algorithm and design of these adders are discussed. The result of this research will help us to choose the better option between serial and parallel multipliers for both fixed point and floating point multipliers to fabricate in different systems. As multipliers form one of the most important components of many systems, analysing different multipliers will help us to frame a better system with area and better speed.DOI:http://dx.doi.org/10.11591/ijece.v3i6.418

    Microprocessor utilization in search and rescue missions

    Get PDF
    The position of an emergency transmitter may be determined by measuring the Doppler shift of the distress signal as received by an orbiting satellite. This requires the computation of an initial estimate and refinement of this estimate through an iterative, nonlinear, least squares estimation. A version of the algorithm was implemented and tested by locating a transmitter on the premises and obtaining observations from a satellite. The computer used was an IBM 360/95. The position was determined within the desired 10 km radius accuracy. The feasibility of performing the same task in real time using microprocessor technology, was determined. The least squares algorithm was implemented on an Intel 8080 microprocessor. The results indicate that a microprocessor can easily match the IBM implementation in accuracy and be performed inside the time limitations set
    corecore