2,155 research outputs found

    Software-Defined Networking-Based Campus Networks Via Deep Reinforcement Learning Algorithms: The Case of University of Technology

    Get PDF
    As a consequence of the COVID-19 pandemic, networks need to be adopted to satisfy the new situation. People have been introduced to new modes of working from home, attending teleconferences, and taking part in e-learning. Other technologies, including smart cities, the Internet of Things, and simulation tools, have also seen a rise in demand. In the new situation, the network most affected is the campus network. Fortunately, a powerful and flexible network model called the software-defined network (SDN) is currently being standardized. SDN can significantly improve the performance of campus networks. Consequently, many scholars and experts have focused on enhancing campus networks via SDN technology. Integrating deep reinforcement learning (DRL) with SDN is pivotal for advancing the quality of service (QoS) of contemporary networks. Their integration enables real-time collaboration, intelligent decision making, and optimized traffic flow and resource allocation. The system proposed in this research is a DRL algorithm applied to a campus network—the University of Technology—and investigated as a case study. The proposed system employs a two-method approach for optimizing the QoS of a network. First, the system classifies service types and directs TCP traffic by using a deep Q-network (DQN) for intelligent routing; then, UDP traffic is managed using the Dijkstra algorithm for shortest-path selection. This hybrid model leverages the strengths of machine learning and classical algorithms to ensure efficient resource allocation and high-quality data transmission. The system combines the adaptability of DQN with the proven reliability of the Dijkstra algorithm to enhance dynamically the network performance. The proposed hybrid system, which used DQN for TCP traffic and the Dijkstra algorithm for UDP traffic, was benchmarked against two other algorithms. The first algorithm was an advanced version of the Dijkstra algorithm that was designed specifically for this study. The second algorithm involved a Q-learning (QL)-based approach. The evaluation metrics included throughput and latency. Tests were conducted under various topologies and load conditions. The research findings revealed a clear advantage of the hybrid system in complex network topologies under heavy-load conditions. The throughput of the proposed system was 30% higher than the advanced Dijkstra and QL algorithms. The latency benefits were pronounced, with a 50% improvement over the competing algorithms

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    How Good Is Neural Combinatorial Optimization?

    Full text link
    Traditional solvers for tackling combinatorial optimization (CO) problems are usually designed by human experts. Recently, there has been a surge of interest in utilizing Deep Learning, especially Deep Reinforcement Learning, to automatically learn effective solvers for CO. The resultant new paradigm is termed Neural Combinatorial Optimization (NCO). However, the advantages and disadvantages of NCO over other approaches have not been well studied empirically or theoretically. In this work, we present a comprehensive comparative study of NCO solvers and alternative solvers. Specifically, taking the Traveling Salesman Problem as the testbed problem, we assess the performance of the solvers in terms of five aspects, i.e., effectiveness, efficiency, stability, scalability and generalization ability. Our results show that in general the solvers learned by NCO approaches still fall short of traditional solvers in nearly all these aspects. A potential benefit of the former would be their superior time and energy efficiency on small-size problem instances when sufficient training instances are available. We hope this work would help better understand the strengths and weakness of NCO, and provide a comprehensive evaluation protocol for further benchmarking NCO approaches against other approaches

    Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities

    Get PDF
    Achieving sustainable freight transport and citizens’ mobility operations in modern cities are becoming critical issues for many governments. By analyzing big data streams generated through IoT devices, city planners now have the possibility to optimize traffic and mobility patterns. IoT combined with innovative transport concepts as well as emerging mobility modes (e.g., ridesharing and carsharing) constitute a new paradigm in sustainable and optimized traffic operations in smart cities. Still, these are highly dynamic scenarios, which are also subject to a high uncertainty degree. Hence, factors such as real-time optimization and re-optimization of routes, stochastic travel times, and evolving customers’ requirements and traffic status also have to be considered. This paper discusses the main challenges associated with Internet of Vehicles (IoV) and vehicle networking scenarios, identifies the underlying optimization problems that need to be solved in real time, and proposes an approach to combine the use of IoV with parallelization approaches. To this aim, agile optimization and distributed machine learning are envisaged as the best candidate algorithms to develop efficient transport and mobility systems
    • …
    corecore