1,570 research outputs found

    PT-Scotch: A tool for efficient parallel graph ordering

    Get PDF
    The parallel ordering of large graphs is a difficult problem, because on the one hand minimum degree algorithms do not parallelize well, and on the other hand the obtainment of high quality orderings with the nested dissection algorithm requires efficient graph bipartitioning heuristics, the best sequential implementations of which are also hard to parallelize. This paper presents a set of algorithms, implemented in the PT-Scotch software package, which allows one to order large graphs in parallel, yielding orderings the quality of which is only slightly worse than the one of state-of-the-art sequential algorithms. Our implementation uses the classical nested dissection approach but relies on several novel features to solve the parallel graph bipartitioning problem. Thanks to these improvements, PT-Scotch produces consistently better orderings than ParMeTiS on large numbers of processors

    High performance interior point methods for three-dimensional finite element limit analysis

    Get PDF
    The ability to obtain rigorous upper and lower bounds on collapse loads of various structures makes finite element limit analysis an attractive design tool. The increasingly high cost of computing those bounds, however, has limited its application on problems in three dimensions. This work reports on a high-performance homogeneous self-dual primal-dual interior point method developed for three-dimensional finite element limit analysis. This implementation achieves convergence times over 4.5× faster than the leading commercial solver across a set of three-dimensional finite element limit analysis test problems, making investigation of three dimensional limit loads viable. A comparison between a range of iterative linear solvers and direct methods used to determine the search direction is also provided, demonstrating the superiority of direct methods for this application. The components of the interior point solver considered include the elimination of and options for handling remaining free variables, multifrontal and supernodal Cholesky comparison for computing the search direction, differences between approximate minimum degree [1] and nested dissection [13] orderings, dealing with dense columns and fixed variables, and accelerating the linear system solver through parallelization. Each of these areas resulted in an improvement on at least one of the problems in the test set, with many achieving gains across the whole set. The serial implementation achieved runtime performance 1.7× faster than the commercial solver Mosek [5]. Compared with the parallel version of Mosek, the use of parallel BLAS routines in the supernodal solver saw a 1.9× speedup, and with a modified version of the GPU-enabled CHOLMOD [11] and a single NVIDIA Tesla K20c this speedup increased to 4.65×

    Engineering Data Reduction for Nested Dissection

    Full text link
    Many applications rely on time-intensive matrix operations, such as factorization, which can be sped up significantly for large sparse matrices by interpreting the matrix as a sparse graph and computing a node ordering that minimizes the so-called fill-in. In this paper, we engineer new data reduction rules for the minimum fill-in problem, which significantly reduce the size of the graph while producing an equivalent (or near-equivalent) instance. By applying both new and existing data reduction rules exhaustively before nested dissection, we obtain improved quality and at the same time large improvements in running time on a variety of instances. Our overall algorithm outperforms the state-of-the-art significantly: it not only yields better elimination orders, but it does so significantly faster than previously possible. For example, on road networks, where nested dissection algorithms are typically used as a preprocessing step for shortest path computations, our algorithms are on average six times faster than Metis while computing orderings with less fill-in

    PACE Solver Description: Tweed-Plus: A Subtree-Improving Heuristic Solver for Treedepth

    Get PDF
    This paper introduces Tweed-Plus, a heuristic solver for the treedepth problem. The solver uses two well-known algorithms to create an initial elimination tree: nested dissection (making use of the Metis library) and the minimum-degree heuristic. After creating an elimination tree of the entire input graph, the solver continues to apply nested dissection and the minimum-degree heuristic to parts of the graph with the aim of replacing subtrees of the elimination tree with alternatives of lower depth
    corecore