103 research outputs found

    Eighth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 22-24, 2007

    Get PDF
    This booklet contains the proceedings of the Eighth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 22-24, 2007. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    Abstract Dependency Graphs for Model Verification

    Get PDF

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Mission programming for flying ensembles: combining planning with self-organization

    Get PDF
    The application of autonomous mobile robots can improve many situations of our daily lives. Robots can enhance working conditions, provide innovative techniques for different research disciplines, and support rescue forces in an emergency. In particular, flying robots have already shown their potential in many use-cases when cooperating in ensembles. Exploiting this potential requires sophisticated measures for the goal-oriented, application-specific programming of flying ensembles and the coordinated execution of so defined programs. Because different goals require different robots providing different capabilities, several software approaches emerged recently that focus on specifically designed robots. These approaches often incorporate autonomous planning, scheduling, optimization, and reasoning attributable to classic artificial intelligence. This allows for the goal-oriented instruction of ensembles, but also leads to inefficiencies if ensembles grow large or face uncertainty in the environment. By leaving the detailed planning of executions to individuals and foregoing optimality and goal-orientation, the selforganization paradigm can compensate for these drawbacks by scalability and robustness. In this thesis, we combine the advantageous properties of autonomous planning with that of self-organization in an approach to Mission Programming for Flying Ensembles. Furthermore, we overcome the current way of thinking about how mobile robots should be designed. Rather than assuming fixed-design robots, we assume that robots are modifiable in terms of their hardware at run-time. While using such robots enables their application in many different use cases, it also requires new software approaches for dealing with this flexible design. The contributions of this thesis thus are threefold. First, we provide a layered reference architecture for physically reconfigurable robot ensembles. Second, we provide a solution for programming missions for ensembles consisting of such robots in a goal-oriented fashion that provides measures for instructing individual robots or entire ensembles as desired in the specific use case. Third, we provide multiple self-organization mechanisms to deal with the system’s flexible design while executing such missions. Combining different self-organization mechanisms ensures that ensembles satisfy the static requirements of missions. We provide additional self-organization mechanisms for coordinating the execution in ensembles ensuring they meet the dynamic requirements of a mission. Furthermore, we provide a solution for integrating goal-oriented swarm behavior into missions using a general pattern we have identified for trajectory-modification-based swarm behavior. Using that pattern, we can modify, quantify, and further process the emergent effect of varying swarm behavior in a mission by changing only the parameters of its implementation. We evaluate results theoretically and practically in different case studies by deploying our techniques to simulated and real hardware.Der Einsatz von autonomen mobilen Robotern kann viele Abläufe unseres täglichen Lebens erleichtern. Ihr Einsatz kann Arbeitsbedingungen verbessern, als innovative Technik für verschiedene Forschungsdisziplinen dienen oder Rettungskräfte im Einsatz unterstützen. Insbesondere Flugroboter haben ihr Potenzial bereits in vielerlei Anwendungsfällen gezeigt, gerade wenn mehrere in Ensembles eingesetzt werden. Das Potenzial fliegender Ensembles zielgerichtet und anwendungsspezifisch auszuschöpfen erfordert ausgefeilte Programmiermethoden und Koordinierungsverfahren. Zu diesem Zweck sind zuletzt viele unterschiedliche und auf speziell entwickelte Roboter zugeschnittene Softwareansätze entstanden. Diese verwenden oft klassische Planungs-, Scheduling-, Optimierungs- und Reasoningverfahren. Während dies vor allem den zielgerichteten Einsatz von Ensembles ermöglicht, ist es jedoch auch oft ineffizient, wenn die Ensembles größer oder deren Einsatzumgebungen unsicher werden. Die genannten Nachteile können durch das Paradigma der Selbstorganisation kompensiert werden: Falls Anwendungen nicht zwangsläufig auf Optimalität und strikte Zielorientierung ausgelegt sind, kann so Skalierbarkeit und Robustheit im System erreicht werden. In dieser Arbeit werden die vorteilhaften Eigenschaften klassischer Planungstechniken mit denen der Selbstorganisation in einem Ansatz zur Missionsprogrammierung für fliegende Ensembles kombiniert. In der dafür entwickelten Lösung wird von der aktuell etablierten Ansicht einer unveränderlichen Roboterkonstruktion abgewichen. Stattdessen wird die Hardwarezusammenstellung der Roboter als zur Laufzeit modifizierbar angesehen. Der Einsatz solcher Roboter erfordert neue Softwareansätze um mit genannter Flexibilität umgehen zu können. Die hier vorgestellten Beiträge zu diesem Thema lassen sich in drei Punkten zusammenfassen: Erstens wird eine Schichtenarchitektur als Referenz für physikalisch konfigurierbare Roboterensembles vorgestellt. Zweitens wird eine Lösung zur zielorientierten Missions-Programmierung für derartige Ensembles präsentiert, mit der sowohl einzelne Roboter als auch ganze Ensembles instruiert werden können. Drittens werden mehrere Selbstorganisationsmechanismen vorgestellt, die die autonome Ausführung so erstellter Missionen ermöglichen. Durch die Kombination verschiedener Selbstorganisationsmechanismen wird sichergestellt, dass Ensembles die missionsspezifischen Anforderungen erfüllen. Zusätzliche Selbstorganisationsmechanismen ermöglichen die koordinierte Ausführung der Missionen durch die Ensembles. Darüber hinaus bietet diese Lösung die Möglichkeit der Integration zielorientierten Schwarmverhaltens. Durch ein allgemeines algorithmisches Verfahren für auf Trajektorien-Modifikation basierendes Schwarmverhalten können allein durch die Änderung des Parametersatzes unterschiedliche emergente Effekte in einer Mission erzielt, quantifiziert und weiterverarbeitet werden. Zur theoretischen und praktischen Evaluierung der Ergebnisse dieser Arbeit wurden die vorgestellten Techniken in verschiedenen Fallstudien auf simulierter sowie realer Hardware zum Einsatz gebracht

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 12224 and 12225 constitutes the refereed proceedings of the 32st International Conference on Computer Aided Verification, CAV 2020, held in Los Angeles, CA, USA, in July 2020.* The 43 full papers presented together with 18 tool papers and 4 case studies, were carefully reviewed and selected from 240 submissions. The papers were organized in the following topical sections: Part I: AI verification; blockchain and Security; Concurrency; hardware verification and decision procedures; and hybrid and dynamic systems. Part II: model checking; software verification; stochastic systems; and synthesis. *The conference was held virtually due to the COVID-19 pandemic

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically
    corecore