1,009 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Secure Beamforming for MIMO Two-Way Communications with an Untrusted Relay

    Full text link
    This paper studies the secure beamforming design in a multiple-antenna three-node system where two source nodes exchange messages with the help of an untrusted relay node. The relay acts as both an essential signal forwarder and a potential eavesdropper. Both two-phase and three-phase two-way relay strategies are considered. Our goal is to jointly optimize the source and relay beamformers for maximizing the secrecy sum rate of the two-way communications. We first derive the optimal relay beamformer structures. Then, iterative algorithms are proposed to find source and relay beamformers jointly based on alternating optimization. Furthermore, we conduct asymptotic analysis on the maximum secrecy sum-rate. Our analysis shows that when all transmit powers approach infinity, the two-phase two-way relay scheme achieves the maximum secrecy sum rate if the source beamformers are designed such that the received signals at the relay align in the same direction. This reveals an important advantage of signal alignment technique in against eavesdropping. It is also shown that if the source powers approach zero the three-phase scheme performs the best while the two-phase scheme is even worse than direct transmission. Simulation results have verified the efficiency of the secure beamforming algorithms as well as the analytical findings.Comment: 10 figures, Submitted to IEEE Transactions on Signal Processin

    Power Allocation Strategies for Wireless Relay Networks with Analog Network Coding: Survey

    Get PDF
    Relay aided communication with network coding can bring spectacular performance enhancements for wireless networks. The proper design of power allocated to each of the nodes involved in the communication is essential as it has impact on the performance when Analog Network coding (ANC) is used. This paper presents a survey on recent power allocation strategies, intended objectives, practical constraints that have been considered, and corresponding performances for networks with ANC protocol

    A Semiblind Two-Way Training Method for Discriminatory Channel Estimation in MIMO Systems

    Get PDF
    Discriminatory channel estimation (DCE) is a recently developed strategy to enlarge the performance difference between a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. Specifically, it makes use of properly designed training signals to degrade channel estimation at the UR which in turn limits the UR's eavesdropping capability during data transmission. In this paper, we propose a new two-way training scheme for DCE through exploiting a whitening-rotation (WR) based semiblind method. To characterize the performance of DCE, a closed-form expression of the normalized mean squared error (NMSE) of the channel estimation is derived for both the LR and the UR. Furthermore, the developed analytical results on NMSE are utilized to perform optimal power allocation between the training signal and artificial noise (AN). The advantages of our proposed DCE scheme are two folds: 1) compared to the existing DCE scheme based on the linear minimum mean square error (LMMSE) channel estimator, the proposed scheme adopts a semiblind approach and achieves better DCE performance; 2) the proposed scheme is robust against active eavesdropping with the pilot contamination attack, whereas the existing scheme fails under such an attack.Comment: accepted for publication in IEEE Transactions on Communication

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Joint Beamforming Optimization and Power Control for Full-Duplex MIMO Two-Way Relay Channel

    Get PDF
    In this paper, we explore the use of full-duplex radio to improve the spectrum efficiency in a two-way relay channel where two sources exchange information through an multi-antenna relay, and all nodes work in the full-duplex mode. The full-duplex operation can reduce the overall communication to only one phase but suffers from the self-interference. Instead of purely suppressing the self-interference, we aim to maximize the end-to-end performance by jointly optimizing the beamforming matrix at the relay which uses the amplify-and-forward protocol as well as the power control at the sources. To be specific, we propose iterative algorithms and 1-D search to solve two problems: finding the achievable rate region and maximizing the sum rate. At each iteration, either the analytical solution or convex formulation is obtained. We compare the proposed full-duplex two-way relaying with the conventional half-duplex two-way relaying, a full-duplex one-way relaying and a performance upper bound. Numerical results show that the proposed full-duplex scheme significantly improves the achievable data rates over the conventional scheme

    Secrecy performance of TAS/SC-based multi-hop harvest-to-transmit cognitive WSNs under joint constraint of interference and hardware imperfection

    Get PDF
    In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.Web of Science195art. no. 116
    • …
    corecore