1,634 research outputs found

    Deep Neural Network Solution for Detecting Intrusion in Network

    Get PDF
    In our experiment, we found that deep learning surpassed machine learning when utilizing the DSSTE algorithm to sample imbalanced training set samples. These methods excel in terms of throughput due to their complex structure and ability to autonomously acquire relevant features from a dataset. The current study focuses on employing deep learning techniques such as RNN and Deep-NN, as well as algorithm design, to aid network IDS designers. Since public datasets already preprocess the data features, deep learning is unable to leverage its automatic feature extraction capability, limiting its ability to learn from preprocessed features. To harness the advantages of deep learning in feature extraction, mitigate the impact of imbalanced data, and enhance classification accuracy, our approach involves directly applying the deep learning model for feature extraction and model training on the existing network traffic data. By doing so, we aim to capitalize on deep learning's benefits, improving feature extraction, reducing the influence of imbalanced data, and enhancing classification accuracy

    Cloud-based Near Real-Time Multiclass Interruption Recognition and Classification using Ensemble and Deep Learning

    Get PDF
    Due to speedy development in internet facilities, detecting intrusions in a real-time cloud environment is challenging via traditional methods. In this case, advanced machine or deep learning methods can be efficiently used in anomaly or intrusion detection. Thus, the present study focuses on designing and developing the intrusion detection scheme using an ensemble learning-based random forest method and deep convolutional neural networks in a near real-time cloud atmosphere. The proposed models were tested on CSE-CICIDS2018 datasets in Python (Anaconda 3) environment. The proposed models achieved 97.73 and 99.91 per cent accuracy using random forest and deep convolutional neural networks, respectively. The developed models can be effectively utilised in real-time cloud datasets to detect intrusions

    Performance Analysis Of Data-Driven Algorithms In Detecting Intrusions On Smart Grid

    Get PDF
    The traditional power grid is no longer a practical solution for power delivery due to several shortcomings, including chronic blackouts, energy storage issues, high cost of assets, and high carbon emissions. Therefore, there is a serious need for better, cheaper, and cleaner power grid technology that addresses the limitations of traditional power grids. A smart grid is a holistic solution to these issues that consists of a variety of operations and energy measures. This technology can deliver energy to end-users through a two-way flow of communication. It is expected to generate reliable, efficient, and clean power by integrating multiple technologies. It promises reliability, improved functionality, and economical means of power transmission and distribution. This technology also decreases greenhouse emissions by transferring clean, affordable, and efficient energy to users. Smart grid provides several benefits, such as increasing grid resilience, self-healing, and improving system performance. Despite these benefits, this network has been the target of a number of cyber-attacks that violate the availability, integrity, confidentiality, and accountability of the network. For instance, in 2021, a cyber-attack targeted a U.S. power system that shut down the power grid, leaving approximately 100,000 people without power. Another threat on U.S. Smart Grids happened in March 2018 which targeted multiple nuclear power plants and water equipment. These instances represent the obvious reasons why a high level of security approaches is needed in Smart Grids to detect and mitigate sophisticated cyber-attacks. For this purpose, the US National Electric Sector Cybersecurity Organization and the Department of Energy have joined their efforts with other federal agencies, including the Cybersecurity for Energy Delivery Systems and the Federal Energy Regulatory Commission, to investigate the security risks of smart grid networks. Their investigation shows that smart grid requires reliable solutions to defend and prevent cyber-attacks and vulnerability issues. This investigation also shows that with the emerging technologies, including 5G and 6G, smart grid may become more vulnerable to multistage cyber-attacks. A number of studies have been done to identify, detect, and investigate the vulnerabilities of smart grid networks. However, the existing techniques have fundamental limitations, such as low detection rates, high rates of false positives, high rates of misdetection, data poisoning, data quality and processing, lack of scalability, and issues regarding handling huge volumes of data. Therefore, these techniques cannot ensure safe, efficient, and dependable communication for smart grid networks. Therefore, the goal of this dissertation is to investigate the efficiency of machine learning in detecting cyber-attacks on smart grids. The proposed methods are based on supervised, unsupervised machine and deep learning, reinforcement learning, and online learning models. These models have to be trained, tested, and validated, using a reliable dataset. In this dissertation, CICDDoS 2019 was used to train, test, and validate the efficiency of the proposed models. The results show that, for supervised machine learning models, the ensemble models outperform other traditional models. Among the deep learning models, densely neural network family provides satisfactory results for detecting and classifying intrusions on smart grid. Among unsupervised models, variational auto-encoder, provides the highest performance compared to the other unsupervised models. In reinforcement learning, the proposed Capsule Q-learning provides higher detection and lower misdetection rates, compared to the other model in literature. In online learning, the Online Sequential Euclidean Distance Routing Capsule Network model provides significantly better results in detecting intrusion attacks on smart grid, compared to the other deep online models

    An Efficient Intrusion Detection Approach Utilizing Various WEKA Classifiers

    Get PDF
    Detection of Intrusion is an essential expertise business segment as well as a dynamic area of study and expansion caused by its requirement. Modern day intrusion detection systems still have these limitations of time sensitivity. The main requirement is to develop a system which is able of handling large volume of network data to detect attacks more accurately and proactively. Research conducted by on the KDDCUP99 dataset resulted in a various set of attributes for each of the four major attack types. Without reducing the number of features, detecting attack patterns within the data is more difficult for rule generation, forecasting, or classification. The goal of this research is to present a new method that Compare results of appropriately categorized and inaccurately categorized as proportions and the features chosen. In this research paper we explained our approach “An Efficient Intrusion Detection Approach Utilizing Various WEKA Classifiers” which is proposed to enhance the competence of recognition of intrusion employing different WEKA classifiers on processed KDDCUP99 dataset. During the experiment we employed Adaboost, J48, JRip, NaiveBayes and Random Tree classifiers to categorize the different attacks from the processed KDDCUP99. Keywords: Classifier, Data Mining, IDS, Network Security, Attacks, Cyber Securit

    Machine Learning-Based Anomaly Detection in Cloud Virtual Machine Resource Usage

    Get PDF
    Anomaly detection is an important activity in cloud computing systems because it aids in the identification of odd behaviours or actions that may result in software glitch, security breaches, and performance difficulties. Detecting aberrant resource utilization trends in virtual machines is a typical application of anomaly detection in cloud computing (VMs). Currently, the most serious cyber threat is distributed denial-of-service attacks. The afflicted server\u27s resources and internet traffic resources, such as bandwidth and buffer size, are slowed down by restricting the server\u27s capacity to give resources to legitimate customers. To recognize attacks and common occurrences, machine learning techniques such as Quadratic Support Vector Machines (QSVM), Random Forest, and neural network models such as MLP and Autoencoders are employed. Various machine learning algorithms are used on the optimised NSL-KDD dataset to provide an efficient and accurate predictor of network intrusions. In this research, we propose a neural network based model and experiment on various central and spiral rearrangements of the features for distinguishing between different types of attacks and support our approach of better preservation of feature structure with image representations. The results are analysed and compared to existing models and prior research. The outcomes of this study have practical implications for improving the security and performance of cloud computing systems, specifically in the area of identifying and mitigating network intrusions

    Network Intrusion Detection System:A systematic study of Machine Learning and Deep Learning approaches

    Get PDF
    The rapid advances in the internet and communication fields have resulted in ahuge increase in the network size and the corresponding data. As a result, manynovel attacks are being generated and have posed challenges for network secu-rity to accurately detect intrusions. Furthermore, the presence of the intruderswiththeaimtolaunchvariousattackswithinthenetworkcannotbeignored.Anintrusion detection system (IDS) is one such tool that prevents the network frompossible intrusions by inspecting the network traffic, to ensure its confidential-ity, integrity, and availability. Despite enormous efforts by the researchers, IDSstillfaceschallengesinimprovingdetectionaccuracywhilereducingfalsealarmrates and in detecting novel intrusions. Recently, machine learning (ML) anddeep learning (DL)-based IDS systems are being deployed as potential solutionsto detect intrusions across the network in an efficient manner. This article firstclarifiestheconceptofIDSandthenprovidesthetaxonomybasedonthenotableML and DL techniques adopted in designing network-based IDS (NIDS) sys-tems. A comprehensive review of the recent NIDS-based articles is provided bydiscussing the strengths and limitations of the proposed solutions. Then, recenttrends and advancements of ML and DL-based NIDS are provided in terms ofthe proposed methodology, evaluation metrics, and dataset selection. Using theshortcomings of the proposed methods, we highlighted various research chal-lenges and provided the future scope for the research in improving ML andDL-based NIDS

    Network Threat Detection Using Machine/Deep Learning in SDN-Based Platforms: A Comprehensive Analysis of State-of-the-Art Solutions, Discussion, Challenges, and Future Research Direction

    Get PDF
    A revolution in network technology has been ushered in by software defined networking (SDN), which makes it possible to control the network from a central location and provides an overview of the network’s security. Despite this, SDN has a single point of failure that increases the risk of potential threats. Network intrusion detection systems (NIDS) prevent intrusions into a network and preserve the network’s integrity, availability, and confidentiality. Much work has been done on NIDS but there are still improvements needed in reducing false alarms and increasing threat detection accuracy. Recently advanced approaches such as deep learning (DL) and machine learning (ML) have been implemented in SDN-based NIDS to overcome the security issues within a network. In the first part of this survey paper, we offer an introduction to the NIDS theory, as well as recent research that has been conducted on the topic. After that, we conduct a thorough analysis of the most recent ML- and DL-based NIDS approaches to ensure reliable identification of potential security risks. Finally, we focus on the opportunities and difficulties that lie ahead for future research on SDN-based ML and DL for NIDS.publishedVersio
    • …
    corecore