2,063 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357

    Various Approaches of Support vector Machines and combined Classifiers in Face Recognition

    Get PDF
    In this paper we present the various approaches used in face recognition from 2001-2012.because in last decade face recognition is using in many fields like Security sectors, identity authentication. Today we need correct and speedy performance in face recognition. This time the face recognition technology is in matured stage because research is conducting continuously in this field. Some extensions of Support vector machine (SVM) is reviewed that gives amazing performance in face recognition.Here we also review some papers of combined classifier approaches that is also a dynamic research area in a pattern recognition

    Efficient object detection via structured learning and local classifiers

    Get PDF
    Object detection has made great strides recently. However, it is still facing two big challenges: detection accuracy and computational efficiency. In this thesis, we present an automatic efficient object detection frarnework to detect object instances ·in images using bounding boxes, which can be trained and tested easily on current personal computers. Our framework is a sliding-window based approach, and consists of two major components: (1) efficient object proposal generation, predicting possible object bounding boxes, and (2) efficient object proposal verification, classifying each bounding box in a multiclass manner. For object proposal generation, we formulate this problem as a structured learning problem and investigate structural support vector machines (SSVMs) with our proposed scale/aspect-ratio quantization scheme and ranking constraints. A general ranking-order decomposition algorithm is developed for solving the formulation efficiently, and applied to generate proposals using a two-stage cascade. Using image gradients as features, our object proposal generation method achieves state-of-the-art results in terms Df object recall at a low cost in computation. For object proposal verification, we propose two locally linear and one locally nonlinear classifiers to approximate the nonlinear decision boundaries in the feature space efficiently. Inspired by the kernel trick, these classifiers map the original features into another feature space explicitly where linear classifiers are employed for classification, and thus have linear computational complexity in both training and testing, similar to that of linear classifiers. Therefore, in general, our classifiers can achieve comparable accuracy to kernel based classifiers at the cost of lower computational time. To demonstrate its efficiency and generality, our framework is applied to four different object detection tasks: VOC detection challenges, traffic sign detection, pedestrian detection, and face detection. In each task, it can perform reasonably well with acceptable detection accuracy and good computational efficiency. For instance, on VOC datasets with 20 object classes, our method achieved about 0.1 mean average precision (AP) within 2 hours of training and 0.05 second of testing a 500 x 300 pixel image using a mixture of MATLAB and C++ code on a current personal computer

    Approximation and Relaxation Approaches for Parallel and Distributed Machine Learning

    Get PDF
    Large scale machine learning requires tradeoffs. Commonly this tradeoff has led practitioners to choose simpler, less powerful models, e.g. linear models, in order to process more training examples in a limited time. In this work, we introduce parallelism to the training of non-linear models by leveraging a different tradeoff--approximation. We demonstrate various techniques by which non-linear models can be made amenable to larger data sets and significantly more training parallelism by strategically introducing approximation in certain optimization steps. For gradient boosted regression tree ensembles, we replace precise selection of tree splits with a coarse-grained, approximate split selection, yielding both faster sequential training and a significant increase in parallelism, in the distributed setting in particular. For metric learning with nearest neighbor classification, rather than explicitly train a neighborhood structure we leverage the implicit neighborhood structure induced by task-specific random forest classifiers, yielding a highly parallel method for metric learning. For support vector machines, we follow existing work to learn a reduced basis set with extremely high parallelism, particularly on GPUs, via existing linear algebra libraries. We believe these optimization tradeoffs are widely applicable wherever machine learning is put in practice in large scale settings. By carefully introducing approximation, we also introduce significantly higher parallelism and consequently can process more training examples for more iterations than competing exact methods. While seemingly learning the model with less precision, this tradeoff often yields noticeably higher accuracy under a restricted training time budget
    • …
    corecore