18,516 research outputs found

    Navigating Occluded Intersections with Autonomous Vehicles using Deep Reinforcement Learning

    Full text link
    Providing an efficient strategy to navigate safely through unsignaled intersections is a difficult task that requires determining the intent of other drivers. We explore the effectiveness of Deep Reinforcement Learning to handle intersection problems. Using recent advances in Deep RL, we are able to learn policies that surpass the performance of a commonly-used heuristic approach in several metrics including task completion time and goal success rate and have limited ability to generalize. We then explore a system's ability to learn active sensing behaviors to enable navigating safely in the case of occlusions. Our analysis, provides insight into the intersection handling problem, the solutions learned by the network point out several shortcomings of current rule-based methods, and the failures of our current deep reinforcement learning system point to future research directions.Comment: IEEE International Conference on Robotics and Automation (ICRA 2018

    Population extremal optimisation for discrete multi-objective optimisation problems

    Get PDF
    The power to solve intractable optimisation problems is often found through population based evolutionary methods. These include, but are not limited to, genetic algorithms, particle swarm optimisation, differential evolution and ant colony optimisation. While showing much promise as an effective optimiser, extremal optimisation uses only a single solution in its canonical form – and there are no standard population mechanics. In this paper, two population models for extremal optimisation are proposed and applied to a multi-objective version of the generalised assignment problem. These models use novel intervention/interaction strategies as well as collective memory in order to allow individual population members to work together. Additionally, a general non-dominated local search algorithm is developed and tested. Overall, the results show that improved attainment surfaces can be produced using population based interactions over not using them. The new EO approach is also shown to be highly competitive with an implementation of NSGA-II.No Full Tex

    An improved Ant Colony System for the Sequential Ordering Problem

    Full text link
    It is not rare that the performance of one metaheuristic algorithm can be improved by incorporating ideas taken from another. In this article we present how Simulated Annealing (SA) can be used to improve the efficiency of the Ant Colony System (ACS) and Enhanced ACS when solving the Sequential Ordering Problem (SOP). Moreover, we show how the very same ideas can be applied to improve the convergence of a dedicated local search, i.e. the SOP-3-exchange algorithm. A statistical analysis of the proposed algorithms both in terms of finding suitable parameter values and the quality of the generated solutions is presented based on a series of computational experiments conducted on SOP instances from the well-known TSPLIB and SOPLIB2006 repositories. The proposed ACS-SA and EACS-SA algorithms often generate solutions of better quality than the ACS and EACS, respectively. Moreover, the EACS-SA algorithm combined with the proposed SOP-3-exchange-SA local search was able to find 10 new best solutions for the SOP instances from the SOPLIB2006 repository, thus improving the state-of-the-art results as known from the literature. Overall, the best known or improved solutions were found in 41 out of 48 cases.Comment: 30 pages, 8 tables, 11 figure
    • …
    corecore