1,029 research outputs found

    Analysis of Theoretical and Applied Machine Learning Models for Network Intrusion Detection

    Get PDF
    Network Intrusion Detection System (IDS) devices play a crucial role in the realm of network security. These systems generate alerts for security analysts by performing signature-based and anomaly-based detection on malicious network traffic. However, there are several challenges when configuring and fine-tuning these IDS devices for high accuracy and precision. Machine learning utilizes a variety of algorithms and unique dataset input to generate models for effective classification. These machine learning techniques can be applied to IDS devices to classify and filter anomalous network traffic. This combination of machine learning and network security provides improved automated network defense by developing highly-optimized IDS models that utilize unique algorithms for enhanced intrusion detection. Machine learning models can be trained using a combination of machine learning algorithms, network intrusion datasets, and optimization techniques. This study sought to identify which variation of these parameters yielded the best-performing network intrusion detection models, measured by their accuracy, precision, recall, and F1 score metrics. Additionally, this research aimed to validate theoretical modelsā€™ metrics by applying them in a real-world environment to see if they perform as expected. This research utilized a quantitative experimental study design to organize a two-phase approach to train and test a series of machine learning models for network intrusion detection by utilizing Python scripting, the scikit-learn library, and Zeek IDS software. The first phase involved optimizing and training 105 machine learning models by testing a combination of seven machine learning algorithms, five network intrusion datasets, and three optimization methods. These 105 models were then fed into the second phase, where the models were applied in a machine learning IDS pipeline to observe how the models performed in an implemented environment. The results of this study identify which algorithms, datasets, and optimization methods generate the best-performing models for network intrusion detection. This research also showcases the need to utilize various algorithms and datasets since no individual algorithm or dataset consistently achieved high metric scores independent of other training variables. Additionally, this research also indicates that optimization during model development is highly recommended; however, there may not be a need to test for multiple optimization methods since they did not typically impact the yielded modelsā€™ overall categorization of v success or failure. Lastly, this studyā€™s results strongly indicate that theoretical machine learning models will most likely perform significantly worse when applied in an implemented IDS ML pipeline environment. This study can be utilized by other industry professionals and research academics in the fields of information security and machine learning to generate better highly-optimized models for their work environments or experimental research

    An Ensemble Learning Model for COVID-19 Detection from Blood Test Samples

    Get PDF
    Current research endeavors in the application of artificial intelligence (AI) methods in the diagnosis of the COVID-19 disease has proven indispensable with very promising results. Despite these promising results, there are still limitations in real-time detection of COVID-19 using reverse transcription polymerase chain reaction (RT-PCR) test data, such as limited datasets, imbalance classes, a high misclassification rate of models, and the need for specialized research in identifying the best features and thus improving prediction rates. This study aims to investigate and apply the ensemble learning approach to develop prediction models for effective detection of COVID-19 using routine laboratory blood test results. Hence, an ensemble machine learning-based COVID-19 detection system is presented, aiming to aid clinicians to diagnose this virus effectively. The experiment was conducted using custom convolutional neural network (CNN) models as a first-stage classifier and 15 supervised machine learning algorithms as a second-stage classifier: K-Nearest Neighbors, Support Vector Machine (Linear and RBF), Naive Bayes, Decision Tree, Random Forest, MultiLayer Perceptron, AdaBoost, ExtraTrees, Logistic Regression, Linear and Quadratic Discriminant Analysis (LDA/QDA), Passive, Ridge, and Stochastic Gradient Descent Classifier. Our findings show that an ensemble learning model based on DNN and ExtraTrees achieved a mean accuracy of 99.28% and area under curve (AUC) of 99.4%, while AdaBoost gave a mean accuracy of 99.28% and AUC of 98.8% on the San Raffaele Hospital dataset, respectively. The comparison of the proposed COVID-19 detection approach with other state-of-the-art approaches using the same dataset shows that the proposed method outperforms several other COVID-19 diagnostics methods.publishedVersio

    Adaptive algorithms for real-world transactional data mining.

    Get PDF
    The accurate identiļ¬cation of the right customer to target with the right product at the right time, through the right channel, to satisfy the customerā€™s evolving needs, is a key performance driver and enhancer for businesses. Data mining is an analytic process designed to explore usually large amounts of data (typically business or market related) in search of consistent patterns and/or systematic relationships between variables for the purpose of generating explanatory/predictive data models from the detected patterns. It provides an effective and established mechanism for accurate identiļ¬cation and classiļ¬cation of customers. Data models derived from the data mining process can aid in effectively recognizing the status and preference of customers - individually and as a group. Such data models can be incorporated into the business market segmentation, customer targeting and channelling decisions with the goal of maximizing the total customer lifetime proļ¬t. However, due to costs, privacy and/or data protection reasons, the customer data available for data mining is often restricted to veriļ¬ed and validated data,(in most cases,only the business owned transactional data is available). Transactional data is a valuable resource for generating such data models. Transactional data can be electronically collected and readily made available for data mining in large quantity at minimum extra cost. Transactional data is however, inherently sparse and skewed. These inherent characteristics of transactional data give rise to the poor performance of data models built using customer data based on transactional data. Data models for identifying, describing, and classifying customers, constructed using evolving transactional data thus need to effectively handle the inherent sparseness and skewness of evolving transactional data in order to be efficient and accurate. Using real-world transactional data, this thesis presents the ļ¬ndings and results from the investigation of data mining algorithms for analysing, describing, identifying and classifying customers with evolving needs. In particular, methods for handling the issues of scalability, uncertainty and adaptation whilst mining evolving transactional data are analysed and presented. A novel application of a new framework for integrating transactional data binning and classiļ¬cation techniques is presented alongside an effective prototype selection algorithm for efficient transactional data model building. A new change mining architecture for monitoring, detecting and visualizing the change in customer behaviour using transactional data is proposed and discussed as an effective means for analysing and understanding the change in customer buying behaviour over time. Finally, the challenging problem of discerning between the change in the customer proļ¬le (which may necessitate the effective change of the customerā€™s label) and the change in performance of the model(s) (which may necessitate changing or adapting the model(s)) is introduced and discussed by way of a novel ļ¬‚exible and efficient architecture for classiļ¬er model adaptation and customer proļ¬les class relabeling
    • ā€¦
    corecore