148 research outputs found

    Multi-parametric Analysis for Mixed Integer Linear Programming: An Application to Transmission Planning and Congestion Control

    Full text link
    Enhancing existing transmission lines is a useful tool to combat transmission congestion and guarantee transmission security with increasing demand and boosting the renewable energy source. This study concerns the selection of lines whose capacity should be expanded and by how much from the perspective of independent system operator (ISO) to minimize the system cost with the consideration of transmission line constraints and electricity generation and demand balance conditions, and incorporating ramp-up and startup ramp rates, shutdown ramp rates, ramp-down rate limits and minimum up and minimum down times. For that purpose, we develop the ISO unit commitment and economic dispatch model and show it as a right-hand side uncertainty multiple parametric analysis for the mixed integer linear programming (MILP) problem. We first relax the binary variable to continuous variables and employ the Lagrange method and Karush-Kuhn-Tucker conditions to obtain optimal solutions (optimal decision variables and objective function) and critical regions associated with active and inactive constraints. Further, we extend the traditional branch and bound method for the large-scale MILP problem by determining the upper bound of the problem at each node, then comparing the difference between the upper and lower bounds and reaching the approximate optimal solution within the decision makers' tolerated error range. In additional, the objective function's first derivative on the parameters of each line is used to inform the selection of lines to ease congestion and maximize social welfare. Finally, the amount of capacity upgrade will be chosen by balancing the cost-reduction rate of the objective function on parameters and the cost of the line upgrade. Our findings are supported by numerical simulation and provide transmission line planners with decision-making guidance

    Almost Symmetries and the Unit Commitment Problem

    Get PDF
    This thesis explores two main topics. The first is almost symmetry detection on graphs. The presence of symmetry in combinatorial optimization problems has long been considered an anathema, but in the past decade considerable progress has been made. Modern integer and constraint programming solvers have automatic symmetry detection built-in to either exploit or avoid symmetric regions of the search space. Automatic symmetry detection generally works by converting the input problem to a graph which is in exact correspondence with the problem formulation. Symmetry can then be detected on this graph using one of the excellent existing algorithms; these are also the symmetries of the problem formulation.The motivation for detecting almost symmetries on graphs is that almost symmetries in an integer program can force the solver to explore nearly symmetric regions of the search space. Because of the known correspondence between integer programming formulations and graphs, this is a first step toward detecting almost symmetries in integer programming formulations. Though we are only able to compute almost symmetries for graphs of modest size, the results indicate that almost symmetry is definitely present in some real-world combinatorial structures, and likely warrants further investigation.The second topic explored in this thesis is integer programming formulations for the unit commitment problem. The unit commitment problem involves scheduling power generators to meet anticipated energy demand while minimizing total system operation cost. Today, practitioners usually formulate and solve unit commitment as a large-scale mixed integer linear program.The original intent of this project was to bring the analysis of almost symmetries to the unit commitment problem. Two power generators are almost symmetric in the unit commitment problem if they have almost identical parameters. Along the way, however, new formulations for power generators were discovered that warranted a thorough investigation of their own. Chapters 4 and 5 are a result of this research.Thus this work makes three contributions to the unit commitment problem: a convex hull description for a power generator accommodating many types of constraints, an improved formulation for time-dependent start-up costs, and an exact symmetry reduction technique via reformulation

    On High-Performance Benders-Decomposition-Based Exact Methods with Application to Mixed-Integer and Stochastic Problems

    Get PDF
    RÉSUMÉ : La programmation stochastique en nombres entiers (SIP) combine la difficultĂ© de l’incertitude et de la non-convexitĂ© et constitue une catĂ©gorie de problĂšmes extrĂȘmement difficiles Ă  rĂ©soudre. La rĂ©solution efficace des problĂšmes SIP est d’une grande importance en raison de leur vaste applicabilitĂ©. Par consĂ©quent, l’intĂ©rĂȘt principal de cette dissertation porte sur les mĂ©thodes de rĂ©solution pour les SIP. Nous considĂ©rons les SIP en deux Ă©tapes et prĂ©sentons plusieurs algorithmes de dĂ©composition amĂ©liorĂ©s pour les rĂ©soudre. Notre objectif principal est de dĂ©velopper de nouveaux schĂ©mas de dĂ©composition et plusieurs techniques pour amĂ©liorer les mĂ©thodes de dĂ©composition classiques, pouvant conduire Ă  rĂ©soudre optimalement divers problĂšmes SIP. Dans le premier essai de cette thĂšse, nous prĂ©sentons une revue de littĂ©rature actualisĂ©e sur l’algorithme de dĂ©composition de Benders. Nous fournissons une taxonomie des amĂ©liorations algorithmiques et des stratĂ©gies d’accĂ©lĂ©ration de cet algorithme pour synthĂ©tiser la littĂ©rature et pour identifier les lacunes, les tendances et les directions de recherche potentielles. En outre, nous discutons de l’utilisation de la dĂ©composition de Benders pour dĂ©velopper une (mĂ©ta- )heuristique efficace, dĂ©crire les limites de l’algorithme classique et prĂ©senter des extensions permettant son application Ă  un plus large Ă©ventail de problĂšmes. Ensuite, nous dĂ©veloppons diverses techniques pour surmonter plusieurs des principaux inconvĂ©nients de l’algorithme de dĂ©composition de Benders. Nous proposons l’utilisation de plans de coupe, de dĂ©composition partielle, d’heuristiques, de coupes plus fortes, de rĂ©ductions et de stratĂ©gies de dĂ©marrage Ă  chaud pour pallier les difficultĂ©s numĂ©riques dues aux instabilitĂ©s, aux inefficacitĂ©s primales, aux faibles coupes d’optimalitĂ© ou de rĂ©alisabilitĂ©, et Ă  la faible relaxation linĂ©aire. Nous testons les stratĂ©gies proposĂ©es sur des instances de rĂ©fĂ©rence de problĂšmes de conception de rĂ©seau stochastique. Des expĂ©riences numĂ©riques illustrent l’efficacitĂ© des techniques proposĂ©es. Dans le troisiĂšme essai de cette thĂšse, nous proposons une nouvelle approche de dĂ©composition appelĂ©e mĂ©thode de dĂ©composition primale-duale. Le dĂ©veloppement de cette mĂ©thode est fondĂ© sur une reformulation spĂ©cifique des sous-problĂšmes de Benders, oĂč des copies locales des variables maĂźtresses sont introduites, puis relĂąchĂ©es dans la fonction objective. Nous montrons que la mĂ©thode proposĂ©e attĂ©nue significativement les inefficacitĂ©s primales et duales de la mĂ©thode de dĂ©composition de Benders et qu’elle est Ă©troitement liĂ©e Ă  la mĂ©thode de dĂ©composition duale lagrangienne. Les rĂ©sultats de calcul sur divers problĂšmes SIP montrent la supĂ©rioritĂ© de cette mĂ©thode par rapport aux mĂ©thodes classiques de dĂ©composition. Enfin, nous Ă©tudions la parallĂ©lisation de la mĂ©thode de dĂ©composition de Benders pour Ă©tendre ses performances numĂ©riques Ă  des instances plus larges des problĂšmes SIP. Les variantes parallĂšles disponibles de cette mĂ©thode appliquent une synchronisation rigide entre les processeurs maĂźtre et esclave. De ce fait, elles souffrent d’un important dĂ©sĂ©quilibre de charge lorsqu’elles sont appliquĂ©es aux problĂšmes SIP. Cela est dĂ» Ă  un problĂšme maĂźtre difficile qui provoque un important dĂ©sĂ©quilibre entre processeur et charge de travail. Nous proposons une mĂ©thode Benders parallĂšle asynchrone dans un cadre de type branche-et-coupe. L’assouplissement des exigences de synchronisation entraine des problĂšmes de convergence et d’efficacitĂ© divers auxquels nous rĂ©pondons en introduisant plusieurs techniques d’accĂ©lĂ©ration et de recherche. Les rĂ©sultats indiquent que notre algorithme atteint des taux d’accĂ©lĂ©ration plus Ă©levĂ©s que les mĂ©thodes synchronisĂ©es conventionnelles et qu’il est plus rapide de plusieurs ordres de grandeur que CPLEX 12.7.----------ABSTRACT : Stochastic integer programming (SIP) combines the difficulty of uncertainty and non-convexity, and constitutes a class of extremely challenging problems to solve. Efficiently solving SIP problems is of high importance due to their vast applicability. Therefore, the primary focus of this dissertation is on solution methods for SIPs. We consider two-stage SIPs and present several enhanced decomposition algorithms for solving them. Our main goal is to develop new decomposition schemes and several acceleration techniques to enhance the classical decomposition methods, which can lead to efficiently solving various SIP problems to optimality. In the first essay of this dissertation, we present a state-of-the-art survey of the Benders decomposition algorithm. We provide a taxonomy of the algorithmic enhancements and the acceleration strategies of this algorithm to synthesize the literature, and to identify shortcomings, trends and potential research directions. In addition, we discuss the use of Benders decomposition to develop efficient (meta-)heuristics, describe the limitations of the classical algorithm, and present extensions enabling its application to a broader range of problems. Next, we develop various techniques to overcome some of the main shortfalls of the Benders decomposition algorithm. We propose the use of cutting planes, partial decomposition, heuristics, stronger cuts, and warm-start strategies to alleviate the numerical challenges arising from instabilities, primal inefficiencies, weak optimality/feasibility cuts, and weak linear relaxation. We test the proposed strategies with benchmark instances from stochastic network design problems. Numerical experiments illustrate the computational efficiency of the proposed techniques. In the third essay of this dissertation, we propose a new and high-performance decomposition approach, called Benders dual decomposition method. The development of this method is based on a specific reformulation of the Benders subproblems, where local copies of the master variables are introduced and then priced out into the objective function. We show that the proposed method significantly alleviates the primal and dual shortfalls of the Benders decomposition method and it is closely related to the Lagrangian dual decomposition method. Computational results on various SIP problems show the superiority of this method compared to the classical decomposition methods as well as CPLEX 12.7. Finally, we study parallelization of the Benders decomposition method. The available parallel variants of this method implement a rigid synchronization among the master and slave processors. Thus, it suffers from significant load imbalance when applied to the SIP problems. This is mainly due to having a hard mixed-integer master problem that can take hours to be optimized. We thus propose an asynchronous parallel Benders method in a branchand- cut framework. However, relaxing the synchronization requirements entails convergence and various efficiency problems which we address them by introducing several acceleration techniques and search strategies. In particular, we propose the use of artificial subproblems, cut generation, cut aggregation, cut management, and cut propagation. The results indicate that our algorithm reaches higher speedup rates compared to the conventional synchronized methods and it is several orders of magnitude faster than CPLEX 12.7

    Transportation Optimization in Tactical and Operational Wood Procurement Planning

    Get PDF
    RÉSUMÉ : L'Ă©conomie canadienne est dĂ©pendante du secteur forestier. Cependant, depuis quelques annĂ©es, ce secteur fait face Ă  de nouveaux dĂ©fis, tels que la rĂ©cession mondiale, un dollar canadien plus fort et une baisse significative de la demande de papier journal. Dans ce nouveau contexte, une planification plus efficace de la chaĂźne d'approvisionnement est devenue un Ă©lĂ©ment essentiel pour assurer le succĂšs et la pĂ©rennitĂ© du secteur. Les coĂ»ts de transport reprĂ©sentent une dĂ©pense importante pour les entreprises forestiĂšres. Ceci est dĂ» aux grands volumes de produits qui doivent ĂȘtre transportĂ©s sur de grandes distances, en particulier dans le contexte gĂ©ographique d'un grand pays comme le Canada. MĂȘme si les problĂšmes de tournĂ©e de vĂ©hicules sont bien couverts dans la littĂ©rature, le secteur forestier a beaucoup de caractĂ©ristiques uniques qui nĂ©cessitent de nouvelles formulations des problĂšmes et des algorithmes de rĂ©solution. À titre d’exemple, les volumes Ă  transporter sont importants comparĂ©s Ă  d’autres secteurs et il existe aussi des contraintes de synchronisation Ă  prendre en compte pour planifier l'Ă©quipement qui effectue le chargement et le dĂ©chargement des vĂ©hicules. Cette thĂšse traite des problĂšmes de planification de la chaĂźne logistique d'approvisionnement en bois: rĂ©colter diverses variĂ©tĂ©s de bois en forĂȘt et les transporter par camion aux usines et aux zones de stockage intermĂ©diaire en respectant la demande pour les diffĂ©rents produits forestiers. Elle propose trois nouvelles formulations de ces problĂšmes. Ces problĂšmes sont diffĂ©rents les uns des autres dans des aspects tel que l'horizon de planification et des contraintes industrielles variĂ©es. Une autre contribution de cette thĂšse sont les mĂ©thodologies dĂ©veloppĂ©es pour rĂ©soudre ces problĂšmes dans le but d’obtenir des calendriers d’approvisionnement applicables par l’industrie et qui minimisent les coĂ»ts de transport. Cette minimisation est le rĂ©sultat d’allocations plus intelligentes des points d'approvisionnement aux points de demande, d’une tournĂ©e de vĂ©hicules qui minimise la distance parcourue Ă  vide et de dĂ©cisions d'ordonnancement de vĂ©hicules qui minimisent les files d’attentes des camions pour le chargement et le dĂ©chargement. Dans le chapitre 3 on considĂšre un modĂšle de planification tactique de la rĂ©colte. Dans ce problĂšme, on dĂ©termine la sĂ©quence de rĂ©colte pour un ensemble de sites forestiers, et on attribue des Ă©quipes de rĂ©colte Ă  ces sites. La formulation en programme linĂ©aire en nombres entiers (PLNE) de ce problĂšme gĂšre les dĂ©cisions d'inventaire et alloue les flux de bois Ă  des entrepreneurs de transport routier sur un horizon de planification annuel. La nouveautĂ© de notre approche est d'intĂ©grer les dĂ©cisions de tournĂ©e des vĂ©hicules dans la PLNE. Cette mĂ©thode profite de la flexibilitĂ© du plan de rĂ©colte pour satisfaire les horaires des conducteurs dans le but de conserver une flotte constante de conducteurs permanents et Ă©galement pour minimiser les coĂ»ts de transport. Une heuristique de gĂ©nĂ©ration de colonnes est crĂ©Ă©e pour rĂ©soudre ce problĂšme avec un sous-problĂšme qui consiste en un problĂšme du plus court chemin avec capacitĂ©s (PCCC) avec une solution qui reprĂ©sente une tournĂ©e de vĂ©hicule. Dans le chapitre 4, on suppose que le plan de rĂ©colte est fixĂ© et on doit dĂ©terminer les allocations et les inventaires du modĂšle tactique prĂ©cĂ©dent, avec aussi des dĂ©cisions de tournĂ©e et d'ordonnancement de vĂ©hicules. On synchronise les vĂ©hicules avec les chargeuses dans les forĂȘts et dans les usines. Les contraintes de synchronisation rendent le problĂšme plus difficile. L’objectif est de dĂ©terminer la taille de la flotte de vĂ©hicules dans un modĂšle tactique et de satisfaire la demande des usines avec un coĂ»t minimum. Le PLNE est rĂ©solu par une heuristique de gĂ©nĂ©ration de colonnes. Le sous-problĂšme consiste en un PCCC avec une solution qui reprĂ©sente une tournĂ©e et un horaire quotidien d'un vĂ©hicule. Dans le chapitre 5, on considĂšre un PLNE du problĂšme similaire Ă  celui Ă©tudiĂ© dans le chapitre 4, mais dans un contexte plus opĂ©rationnel: un horizon de planification d'un mois. Contrairement aux horaires quotidiens de vĂ©hicules du problĂšme prĂ©cĂ©dent, on doit planifier les conducteurs par semaine pour gĂ©rer les situations dans lesquelles le dĂ©chargement d’un camion s’effectue le lendemain de la journĂ©e oĂč le chargement a eu lieu. Cette situation se prĂ©sente quand les conducteurs travaillent la nuit ou quand ils travaillent aprĂšs les heures de fermeture de l'usine et doivent dĂ©charger leur camion au dĂ©but de la journĂ©e suivante. Ceci permet aussi une gestion plus directe des exigences des horaires hebdomadaires. Les contraintes de synchronisation entre les vĂ©hicules et les chargeuses qui sont prĂ©sentes dans le PLNE permettent de crĂ©er un horaire pour chaque opĂ©rateur de chargeuse. Les coĂ»ts de transport sont alors minimisĂ©s. On rĂ©sout le problĂšme Ă  l’aide d’une heuristique de gĂ©nĂ©ration de colonnes. Le sous-problĂšme consiste en un PCCC avec une solution qui reprĂ©sente une tournĂ©e et un horaire hebdomadaire d’un vĂ©hicule.----------ABSTRACT : The Canadian economy is heavily dependent on the forestry industry; however in recent years, this industry has been adapting to new challenges including a worldwide economic downturn, a strengthening Canadian dollar relative to key competing nations, and a significant decline in newsprint demand. Therefore efficiency in supply chain planning is key for the industry to succeed in the future. Transportation costs in particular represent a significant expense to forestry companies. This is due to large volumes of product that must be transported over very large distances, especially in the geographic context of a country the size of Canada. While the field of vehicle routing problems has been heavily studied and applied to many industries for decades, the forestry industry has many unique attributes that necessitate new problem formulations and solution methodologies. These include, but are not limited to, very large (significantly higher than vehicle capacity) volumes to be transported and synchronization constraints to schedule the equipment that load and unload the vehicles. This thesis is set in the wood procurement supply chain of harvesting various assortments of wood in the forest, transporting by truck to mills and intermediate storage locations, while meeting mill demands of the multiple harvested products, and contributes three new problem formulations. These problems differ with respect to planning horizon and varied industrial constraints. Another contribution is the methodologies developed to resolve these problems to yield industrially applicable schedules that minimize vehicle costs: from smarter allocations of supply points to demand points, vehicle routing decisions that optimize the occurrence of backhaul savings, and vehicle scheduling decisions that minimize queues of trucks waiting for loading and unloading equipment. In Chapter 3, we consider a tactical harvest planning model. In this problem we determine the sequence of the harvest of various forest sites, and assign harvest teams to these sites. The MILP formulation of this problem makes inventory decisions and allocates wood flow to trucking contractors over the annual planning horizon, subject to demand constraints and trucking capacities. The novel aspect of our approach is to incorporate vehicle routing decisions into our MILP formulation. This takes advantage of the relatively higher flexibility of the harvest plan to ensure driver shifts of desired characteristics, which is important to retain a permanent driver fleet, and also prioritize the creation of backhaul opportunities in the schedule. A branch-and-price heuristic is developed to resolve this problem, with the subproblem being a vehicle routing problem that represents a geographical shift for a vehicle. In Chapter 4, we assume the harvest plan to be an input, and integrate the allocation and inventory variables of the previous tactical model with vehicle routing and scheduling decisions, synchronizing the vehicles with loaders in the forests and at the mills. The synchronization constraints make a considerably more difficult problem. We use this as a tactical planning model, with no specific driver constraints but a goal of determining vehicle fleet size to maximize their utilization. The objective is to meet mill demands over the planning horizon while minimizing transportation and inventory costs, subject to capacity, wood freshness, fleet balancing, and other industrial constraints. The MILP formulation of the problem is resolved via a column generation algorithm, with the subproblem being a daily vehicle routing and scheduling problem. In Chapter 5, we consider a similar problem formulation to that studied in Chapter 4, but set in a more operational context over a planning horizon of approximately one month. Unlike the daily vehicle schedules of the previous problem, we must schedule drivers by week to manage situations of picking up a load on one day and delivering on another day, which is necessary when drivers work overnight shifts or when they work later than mill closing hours and must unload their truck on the next day's shift. This also allows for more direct management of weekly schedule requirements. Loader synchronization constraints are present in the model which derives a schedule for each loader operator. Given mill demands, transportation costs are then minimized. We resolve the problem via a branch-and-price heuristic, with a subproblem of a weekly vehicle routing and scheduling problem. We also measure the benefits of applying interior point stabilization to the resource synchronization constraints in order to improve the column generation, a new application of the technique
    • 

    corecore