366 research outputs found

    Annotating patient clinical records with syntactic chunks and named entities: the Harvey corpus

    Get PDF
    The free text notes typed by physicians during patient consultations contain valuable information for the study of disease and treatment. These notes are difficult to process by existing natural language analysis tools since they are highly telegraphic (omitting many words), and contain many spelling mistakes, inconsistencies in punctuation, and non-standard word order. To support information extraction and classification tasks over such text, we describe a de-identified corpus of free text notes, a shallow syntactic and named entity annotation scheme for this kind of text, and an approach to training domain specialists with no linguistic background to annotate the text. Finally, we present a statistical chunking system for such clinical text with a stable learning rate and good accuracy, indicating that the manual annotation is consistent and that the annotation scheme is tractable for machine learning

    A realistic assessment of methods for extracting gene/protein interactions from free text

    Get PDF
    Background: The automated extraction of gene and/or protein interactions from the literature is one of the most important targets of biomedical text mining research. In this paper we present a realistic evaluation of gene/protein interaction mining relevant to potential non-specialist users. Hence we have specifically avoided methods that are complex to install or require reimplementation, and we coupled our chosen extraction methods with a state-of-the-art biomedical named entity tagger. Results: Our results show: that performance across different evaluation corpora is extremely variable; that the use of tagged (as opposed to gold standard) gene and protein names has a significant impact on performance, with a drop in F-score of over 20 percentage points being commonplace; and that a simple keyword-based benchmark algorithm when coupled with a named entity tagger outperforms two of the tools most widely used to extract gene/protein interactions. Conclusion: In terms of availability, ease of use and performance, the potential non-specialist user community interested in automatically extracting gene and/or protein interactions from free text is poorly served by current tools and systems. The public release of extraction tools that are easy to install and use, and that achieve state-of-art levels of performance should be treated as a high priority by the biomedical text mining community

    Investigating heterogeneous protein annotations toward cross-corpora utilization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of corpora, collections of structured texts, has been increasing, as a result of the growing interest in the application of natural language processing methods to biological texts. Many named entity recognition (NER) systems have been developed based on these corpora. However, in the biomedical community, there is yet no general consensus regarding named entity annotation; thus, the resources are largely incompatible, and it is difficult to compare the performance of systems developed on resources that were divergently annotated. On the other hand, from a practical application perspective, it is desirable to utilize as many existing annotated resources as possible, because annotation is costly. Thus, it becomes a task of interest to integrate the heterogeneous annotations in these resources.</p> <p>Results</p> <p>We explore the potential sources of incompatibility among gene and protein annotations that were made for three common corpora: GENIA, GENETAG and AIMed. To show the inconsistency in the corpora annotations, we first tackle the incompatibility problem caused by corpus integration, and we quantitatively measure the effect of this incompatibility on protein mention recognition. We find that the F-score performance declines tremendously when training with integrated data, instead of training with pure data; in some cases, the performance drops nearly 12%. This degradation may be caused by the newly added heterogeneous annotations, and cannot be fixed without an understanding of the heterogeneities that exist among the corpora. Motivated by the result of this preliminary experiment, we further qualitatively analyze a number of possible sources for these differences, and investigate the factors that would explain the inconsistencies, by performing a series of well-designed experiments. Our analyses indicate that incompatibilities in the gene/protein annotations exist mainly in the following four areas: the boundary annotation conventions, the scope of the entities of interest, the distribution of annotated entities, and the ratio of overlap between annotated entities. We further suggest that almost all of the incompatibilities can be prevented by properly considering the four aspects aforementioned.</p> <p>Conclusion</p> <p>Our analysis covers the key similarities and dissimilarities that exist among the diverse gene/protein corpora. This paper serves to improve our understanding of the differences in the three studied corpora, which can then lead to a better understanding of the performance of protein recognizers that are based on the corpora.</p

    Plataforma colaborativa de anotação de literatura biomédica

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaWith the overwhelming amount of biomedical textual information being produced, several manual curation efforts have been set up to extract and store concepts and their relationships into structured resources. Since manual annotation is a very demanding and expensive task, computerized solutions were developed to perform such tasks automatically. Nevertheless, high-end information extraction techniques are still not widely used by biomedical research communities, mainly due to the lack of standards and limitations in usability. Interactive annotation tools intend to fill this gap, taking advantage of automatic techniques and existing knowledge bases to assist expert curators in their daily tasks. This thesis presents Egas, a web-based platform for biomedical text mining and assisted curation with highly usable interfaces for manual and automatic inline annotation of concepts and relations. Furthermore, a comprehensive set of knowledge bases are integrated and indexed to provide straightforward concept normalization features. Additionally, curators can also rely on real-time collaboration and conversation functionalities allowing discussing details of the annotation task as well as providing instant feedback of curators interactions. Egas also provides interfaces for on-demand management of the annotation task settings and guidelines, and supports standard formats and literature services to import and export documents. By taking advantage of Egas, we participated in the BioCreative IV interactive annotation task, targeting the assisted identification of protein-protein interactions described in PubMed abstracts related to neuropathological disorders. Thereby, when evaluated by expert curators, Egas obtained very positive scores in terms of usability, reliability and performance. These results, together with the provided innovative features, place Egas as a state-of-the-art solution for fast and accurate curation of information, facilitating the task of creating and updating knowledge bases in a more consistent way.Com o acréscimo da quantidade de literatura biomédica a ser produzida todos os dias, vários esforços têm sido feitos para tentar extrair e armazenar de forma estruturada os conceitos e as relações nela presentes. Por outro lado, uma vez que a extração manual de conceitos compreende uma tarefa extremamente exigente e exaustiva, algumas soluções de anotação automática foram surgindo. No entanto, mesmo os sistemas de anotação mais completos não têm sido muito bem recebidos no seio das equipas de investigação, em grande parte devido às falhas a nível de usabilidade e de interface standards. Para colmatar esta falha são necessárias ferramentas de anotação interativa, que tirem proveito de sistemas de anotação automática e de bases de dados já existentes, para ajudar os anotadores nas suas tarefas do dia-a-dia. Nesta dissertação iremos apresentar uma plataforma de anotação de literatura biomédica orientada para a usabilidade e que suporta anotação manual e automática. No mesmo sentido, integramos no sistema várias bases de dados, no intuito de facilitar a normalização dos conceitos anotados. Por outro lado, os utilizadores podem também contar com funcionalidades colaborativas em toda a aplicação, estimulando assim a interação entre os anotadores e, desta forma, a produção de melhores resultados. O sistema apresenta ainda funcionalidades para importar e exportar ficheiros, gestão de projetos e diretivas de anotação. Com esta plataforma, Egas, participámos na tarefa de anotação interativa do BioCreative IV (IAT), nomeadamente na identificação de interações proteína-proteína. Depois de avaliado por um conjunto de anotadores, o Egas obteve os melhores resultados entre os sistemas apresentados, relativamente à usabilidade, confiança e desempenho

    Large-scale automated protein function prediction

    Get PDF
    Includes bibliographical references.2016 Summer.Proteins are the workhorses of life, and identifying their functions is a very important biological problem. The function of a protein can be loosely defined as everything it performs or happens to it. The Gene Ontology (GO) is a structured vocabulary which captures protein function in a hierarchical manner and contains thousands of terms. Through various wet-lab experiments over the years scientists have been able to annotate a large number of proteins with GO categories which reflect their functionality. However, experimentally determining protein functions is a highly resource-intensive task, and a large fraction of proteins remain un-annotated. Recently a plethora automated methods have emerged and their reasonable success in computationally determining the functions of proteins using a variety of data sources – by sequence/structure similarity or using various biological network data, has led to establishing automated function prediction (AFP) as an important problem in bioinformatics. In a typical machine learning problem, cross-validation is the protocol of choice for evaluating the accuracy of a classifier. But, due to the process of accumulation of annotations over time, we identify the AFP as a combination of two sub-tasks: making predictions on annotated proteins and making predictions on previously unannotated proteins. In our first project, we analyze the performance of several protein function prediction methods in these two scenarios. Our results show that GOstruct, an AFP method that our lab has previously developed, and two other popular methods: binary SVMs and guilt by association, find it hard to achieve the same level of accuracy on these two tasks compared to the performance evaluated through cross-validation, and that predicting novel annotations for previously annotated proteins is a harder problem than predicting annotations for uncharacterized proteins. We develop GOstruct 2.0 by proposing improvements which allows the model to make use of information of a protein's current annotations to better handle the task of predicting novel annotations for previously annotated proteins. Experimental results on yeast and human data show that GOstruct 2.0 outperforms the original GOstruct, demonstrating the effectiveness of the proposed improvements. Although the biomedical literature is a very informative resource for identifying protein function, most AFP methods do not take advantage of the large amount of information contained in it. In our second project, we conduct the first ever comprehensive evaluation on the effectiveness of literature data for AFP. Specifically, we extract co-mentions of protein-GO term pairs and bag-of-words features from the literature and explore their effectiveness in predicting protein function. Our results show that literature features are very informative of protein function but with further room for improvement. In order to improve the quality of automatically extracted co-mentions, we formulate the classification of co-mentions as a supervised learning problem and propose a novel method based on graph kernels. Experimental results indicate the feasibility of using this co-mention classifier as a complementary method that aids the bio-curators who are responsible for maintaining databases such as Gene Ontology. This is the first study of the problem of protein-function relation extraction from biomedical text. The recently developed human phenotype ontology (HPO), which is very similar to GO, is a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In our third project, we introduce PHENOstruct, a computational method that directly predicts the set of HPO terms for a given gene. We compare PHENOstruct with several baseline methods and show that it outperforms them in every respect. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data

    U-Compare bio-event meta-service: compatible BioNLP event extraction services

    Get PDF
    AbstractBackgroundBio-molecular event extraction from literature is recognized as an important task of bio text mining and, as such, many relevant systems have been developed and made available during the last decade. While such systems provide useful services individually, there is a need for a meta-service to enable comparison and ensemble of such services, offering optimal solutions for various purposes.ResultsWe have integrated nine event extraction systems in the U-Compare framework, making them inter-compatible and interoperable with other U-Compare components. The U-Compare event meta-service provides various meta-level features for comparison and ensemble of multiple event extraction systems. Experimental results show that the performance improvements achieved by the ensemble are significant. ConclusionsWhile individual event extraction systems themselves provide useful features for bio text mining, the U-Compare meta-service is expected to improve the accessibility to the individual systems, and to enable meta-level uses over multiple event extraction systems such as comparison and ensemble.This research was partially supported by KAKENHI 18002007 [YK, MM, JDK, SP, TO, JT]; JST PRESTO and KAKENHI 21500130 [YK]; the Academy of Finland and computational resources were provided by CSC -- IT Center for Science Ltd [JB, FG]; the Research Foundation Flanders (FWO) [SVL]; UK Biotechnology and Biological Sciences, Research Council (BBSRC project BB/G013160/1 Automated Biological Event Extraction from the Literature for Drug Discovery) and JISC, National Centre for Text Mining [SA]; the Spanish grant BIO2010-17527 [MN, APM]; NIH Grant U54 DA021519 [AO, DRR]Peer Reviewe

    Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011

    Get PDF
    We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously reported results and perform further analyses of the outputs of the participating systems. We place specific emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of extraction systems can be combined to improve on the performance achieved by any system in isolation. The manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.bionlp-st.org and the tasks continue as open challenges for all interested parties

    Cross-Platform Text Mining and Natural Language Processing Interoperability - Proceedings of the LREC2016 conference

    Get PDF
    No abstract available

    Cross-Platform Text Mining and Natural Language Processing Interoperability - Proceedings of the LREC2016 conference

    Get PDF
    No abstract available
    corecore