388 research outputs found

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion

    An Online Adaptive Machine Learning Framework for Autonomous Fault Detection

    Get PDF
    The increasing complexity and autonomy of modern systems, particularly in the aerospace industry, demand robust and adaptive fault detection and health management solutions. The development of a data-driven fault detection system that can adapt to varying conditions and system changes is critical to the performance, safety, and reliability of these systems. This dissertation presents a novel fault detection approach based on the integration of the artificial immune system (AIS) paradigm and Online Support Vector Machines (OSVM). Together, these algorithms create the Artificial Immune System augemented Online Support Vector Machine (AISOSVM). The AISOSVM framework combines the strengths of the AIS and OSVM to create a fault detection system that can effectively identify faults in complex systems while maintaining adaptability. The framework is designed using Model-Based Systems Engineering (MBSE) principles, employing the Capella tool and the Arcadia methodology to develop a structured, integrated approach for the design and deployment of the data-driven fault detection system. A key contribution of this research is the development of a Clonal Selection Algorithm that optimizes the OSVM hyperparameters and the V-Detector algorithm parameters, resulting in a more effective fault detection solution. The integration of the AIS in the training process enables the generation of synthetic abnormal data, mitigating the need for engineers to gather large amounts of failure data, which can be impractical. The AISOSVM also incorporates incremental learning and decremental unlearning for the Online Support Vector Machine, allowing the system to adapt online using lightweight computational processes. This capability significantly improves the efficiency of fault detection systems, eliminating the need for offline retraining and redeployment. Reinforcement Learning (RL) is proposed as a promising future direction for the AISOSVM, as it can help autonomously adapt the system performance in near real-time, further mitigating the need for acquiring large amounts of system data for training, and improving the efficiency of the adaptation process by intelligently selecting the best samples to learn from. The AISOSVM framework was applied to real-world scenarios and platform models, demonstrating its effectiveness and adaptability in various use cases. The combination of the AIS and OSVM, along with the online learning and RL integration, provides a robust and adaptive solution for fault detection and health management in complex autonomous systems. This dissertation presents a significant contribution to the field of fault detection and health management by integrating the artificial immune system paradigm with Online Support Vector Machines, developing a structured, integrated approach for designing and deploying data-driven fault detection systems, and implementing reinforcement learning for online, autonomous adaptation of fault management systems. The AISOSVM framework offers a promising solution to address the challenges of fault detection in complex, autonomous systems, with potential applications in a wide range of industries beyond aerospace

    Fault Detection and Isolation of Wind Turbines using Immune System Inspired Algorithms

    Get PDF
    Recently, the research focus on renewable sources of energy has been growing intensively. This is mainly due to potential depletion of fossil fuels and its associated environmental concerns, such as pollution and greenhouse gas emissions. Wind energy is one of the fastest growing sources of renewable energy, and policy makers in both developing and developed countries have built their vision on future energy supply based on and by emphasizing the wind power. The increase in the number of wind turbines, as well as their size, have led to undeniable care and attention to health and condition monitoring as well as fault diagnosis of wind turbine systems and their components. In this thesis, two main immune inspired algorithms are used to perform Fault Detection and Isolation (FDI) of a Wind Turbine (WT), namely the Negative Selection Algorithm (NSA) as well as the Dendritic Cell Algorithm (DCA). First, an NSA-based fault diagnosis methodology is proposed in which a hierarchical bank of NSAs is used to detect and isolate both individual as well as simultaneously occurring faults common to the wind turbines. A smoothing moving window filter is then utilized to further improve the reliability and performance of the proposed FDI scheme. Moreover, the performance of the proposed scheme is compared with the state-of-the-art data-driven technique, namely Support Vector Machine (SVM) to demonstrate and illustrate the superiority and advantages of the proposed NSA-based FDI scheme. Finally, a nonparametric statistical comparison test is implemented to evaluate the proposed methodology with that of the SVM under various fault severities. In the second part, another immune inspired methodology, namely the Dendritic Cell Algorithm (DCA) is used to perform online sensor fault FDI. A noise filter is also designed to attenuate the measurement noise, resulting in better FDI results. The proposed DCA-based FDI scheme is then compared with the previously developed NSA-based FDI scheme, and a nonparametric statistical comparison test is also performed. Both of the proposed immune inspired frameworks are applied to a well-known wind turbine benchmark model in order to validate the effectiveness of the proposed methodologies

    Monitoring and Control Framework for Advanced Power Plant Systems Using Artificial Intelligence Techniques

    Get PDF
    This dissertation presents the design, development, and simulation testing of a monitoring and control framework for dynamic systems using artificial intelligence techniques. A comprehensive monitoring and control system capable of detecting, identifying, evaluating, and accommodating various subsystem failures and upset conditions is presented. The system is developed by synergistically merging concepts inspired from the biological immune system with evolutionary optimization algorithms and adaptive control techniques.;The proposed methodology provides the tools for addressing the complexity and multi-dimensionality of the modern power plants in a comprehensive and integrated manner that classical approaches cannot achieve. Current approaches typically address abnormal condition (AC) detection of isolated subsystems of low complexity, affected by specific AC involving few features with limited identification capability. They do not attempt AC evaluation and mostly rely on control system robustness for accommodation. Addressing the problem of power plant monitoring and control under AC at this level of completeness has not yet been attempted.;Within the proposed framework, a novel algorithm, namely the partition of the universe, was developed for building the artificial immune system self. As compared to the clustering approach, the proposed approach is less computationally intensive and facilitates the use of full-dimensional self for system AC detection, identification, and evaluation. The approach is implemented in conjunction with a modified and improved dendritic cell algorithm. It allows for identifying the failed subsystems without previous training and is extended to address the AC evaluation using a novel approach.;The adaptive control laws are designed to augment the performance and robustness of baseline control laws under normal and abnormal operating conditions. Artificial neural network-based and artificial immune system-based approaches are developed and investigated for an advanced power plant through numerical simulation.;This dissertation also presents the development of an interactive computational environment for the optimization of power plant control system using evolutionary techniques with immunity-inspired enhancements. Several algorithms mimicking mechanisms of the immune system of superior organisms, such as cloning, affinity-based selection, seeding, and vaccination are used. These algorithms are expected to enhance the computational effectiveness, improve convergence, and be more efficient in handling multiple local extrema, through an adequate balance between exploration and exploitation.;The monitoring and control framework formulated in this dissertation applies to a wide range of technical problems. The proposed methodology is demonstrated with promising results using a high validity DynsimRTM model of the acid gas removal unit that is part of the integrated gasification combined cycle power plant available at West Virginia University AVESTAR Center. The obtained results show that the proposed system is an efficient and valuable technique to be applied to a real world application. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Efficient spectrum-handoff schemes for cognitive radio networks

    Get PDF
    Radio spectrum access is important for terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations. The services offered by terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations have evolved due to technological advances. They are expected to meet increasing users' demands which will require more spectrum. The increasing demand for high throughput by users necessitates allocating additional spectrum to terrestrial wireless networks. Terrestrial radio astronomy observations s require additional bandwidth to observe more spectral windows. Commercial earth observation requires more spectrum for enhanced transmission of earth observation data. The evolution of terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations leads to the emergence of new interference scenarios. For instance, terrestrial wireless networks pose interference risks to mobile ground stations; while inter-satellite links can interfere with terrestrial radio astronomy observations. Terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations also require mechanisms that will enhance the performance of their users. This thesis proposes a framework that prevents interference between terrestrial wireless networks, commercial earth observations and terrestrial radio astronomy observations when they co-exist; and enhance the performance of their users. The framework uses the cognitive radio; because it is capable of multi-context operation. In the thesis, two interference avoidance mechanisms are presented. The first mechanism prevents interference between terrestrial radio astronomy observations and inter-satellite links. The second mechanism prevent interference between terrestrial wireless networks and the commercial earth observation ground segment. The first interference reductionmechanism determines the inter-satellite link transmission duration. Analysis shows that interference-free inter-satellite links transmission is achievable during terrestrial radio astronomy observation switching for up to 50.7 seconds. The second mechanism enables the mobile ground station, with a trained neural network, to predict the terrestrial wireless network channel idle state. The prediction of the TWN channel idle state prevents interference between the terrestrial wireless network and the mobile ground station. Simulation shows that incorporating prediction in the mobile ground station enhances uplink throughput by 40.6% and reduces latency by 18.6%. In addition, the thesis also presents mechanisms to enhance the performance of the users in terrestrial wireless network, commercial earth observations and terrestrial radio astronomy observations. The thesis presents mechanisms that enhance user performance in homogeneous and heterogeneous terrestrial wireless networks. Mechanisms that enhance the performance of LTE-Advanced users with learning diversity are also presented. Furthermore, a future commercial earth observation network model that increases the accessible earth climatic data is presented. The performance of terrestrial radio astronomy observation users is enhanced by presenting mechanisms that improve angular resolution, power efficiency and reduce infrastructure costs

    Desenvolvimentos de uma nova abordagem em inteligência artificial para deteção de anomalias

    Get PDF
    Doutoramento em Engenharia InformáticaEste trabalho visou o desenvolvimento do modelo de frustração celular para aplicações à segurança informática. Neste âmbito foram desenvolvidos os processos necessários para materializar o modelo de frustração celular num algoritmo semi-supervisionado de deteção de anomalias. É por seguida efetuada uma comparação da capacidade de discriminação do algoritmo de frustração celular com algoritmos do estado de arte, nomeadamente máquinas de vetores de suporte e florestas aleatórias (com sigla em inglês de SVM e RF, respetivamente). Verifica-se que nos casos estudados o algoritmo de frustração celular obtém uma capacidade de discriminação de anomalias semelhante, senão melhor, que os algoritmos anteriormente descritos. São ainda descritas otimizações para reduzir o elevado custo computacional do algoritmo recorrendo a novos paradigmas de computação, i.e. pelo uso de placas gráficas, assim como otimizações que visam reduzir a complexidade do algoritmo. Em ambos os casos foi verificada uma redução do tempo computacional. Por fim, é ainda verificado que as melhorias introduzidas permitiram que a capacidade de discriminação do algoritmo se tornasse menos sensível à perturbação dos seus parâmetros.This work sought to develop the cellular frustration model for computer security applications. In this sense, the required processes to materialize the cellular frustration model in a semi-supervised anomaly detection algorithm were developed. The discrimination capability of the cellular frustration algorithm was then compared with the discrimination capability of state of the art algorithms, namely support vector machines and random forests (SVMs and RFs, respectively). In the studied cases it is observed that the cellular frustration algorithm exhibits comparable, if not better, anomaly detection capabilities. Optimizations to reduce the high computational cost that rely on new computational paradigms, i.e. by the use of graphic cards, as well as optimizations to reduce the algorithm complexity were also described. In both cases it was observed a reduction of the computational time required by the algorithm. Finally, it was verified that the introduced improvements allowed the anomaly detection capability of the algorithm to become less sensitive to the perturbation of its parameters

    DEVELOPMENT OF NANOPARTICLE RATE-MODULATING AND SYNCHROTRON PHASE CONTRAST-BASED ASSESSMENT TECHNIQUES FOR CARDIAC TISSUE ENGINEERING

    Get PDF
    Myocardial infarction (MI) is the most common cause of heart failure. Despite advancements in cardiovascular treatments and interventions, current therapies can only slow down the progression of heart failure, but not tackle the progressive loss of cardiomyocytes after MI. One aim of cardiac tissue engineering is to develop implantable constructs (e.g. cardiac patches) that provide physical and biochemical cues for myocardium regeneration. To this end, vascularization in these constructs is of great importance and one key issue involved is the spatiotemporal control of growth-factor (GF)-release profiles. The other key issue is to non-invasively quantitatively monitor the success of these constructs in-situ, which will be essential for longitudinal assessments as studies are advanced from ex-vivo to animal models and human patients. To address these issues, the present research aims to develop nanoparticles to modulate the temporal control of GF release in cardiac patches, and to develop synchrotron X-ray phase contrast tomography for visualization and quantitative assessment of 3D-printed cardiac patch implanted in a rat MI model, with four specific objectives presented below. The first research objective is to optimize nanoparticle-fabrication process in terms of particle size, polydispersity, loading capacity, zeta potential and morphology. To achieve this objective, a comprehensive experimental study was performed to examine various process parameters used in the fabrication of poly(lactide-co-glycolide) (PLGA) nanoparticles, along with the development of a novel computational approach for the nanoparticle-fabrication optimization. Results show that among various process parameters examined, the polymer and the external aqueous phase concentrations are the most significant ones to affect the nanoparticle physical and release characteristics. Also, the limitations of PLGA nanoparticles such as initial burst effect and the lack of time-delayed release patterns are identified. The second research objective is to develop bi-layer nanoparticles to achieve the controllable release of GFs, meanwhile overcoming the above identified limitations of PLGA nanoparticles. The bi-layer nanoparticle is composed of protein-encapsulating PLGA core and poly(L-lactide) (PLLA)-rate regulating shell, thus allowing for low burst effect, protein structural integrity and time-delayed release patterns. The bi-layer nanoparticles, along with PLGA ones, were successfully fabricated and then used to regulate simultaneous and/or sequential release of multiple angiogenic factors with the results demonstrating that they are effective to promote angiogenesis in fibrin matrix. The third objective is to develop novel mathematical models to represent the controlled-release of bioactive agents from nanoparticles. For this, two models, namely the mechanistic model and geno-mechanistic model, were developed based on the local and global volume averaging approaches, respectively, and then validated with experiments on both single- and bi-layer nanoparticles, by which the ovalbumin was used as a protein model for the release examination. The results illustrates the developed models are able to provide insight on the release mechanism and to predict nanoparticle transport and degradation properties of nanoparticles, thus providing a means to regulate and control the release of bioactive agents from the nanoparticles for tissue engineering applications. The fourth objective of this research is to develop a synchrotron-based phase contrast non-invasive imaging technique for visualization and quantitative assessment of cardiac patch implanted in a rat MI model. To this end, the patches were created from alginate strands using the three-dimensional (3D) printing technique and then surgically implanted on rat hearts for the assessment based on phase contrast tomography. The imaging of samples was performed at various sample-to-detector distances, CT-scan time, and areas of the region of interest (ROI) to examine their effects on imaging quality. Phase-retrieved images depict visible and quantifiable structural details of the patch at low radiation dose, which, however, are not seen from the images by means of dual absorption-phase and a 3T clinical magnetic resonance imaging. Taken together, this research represents a significant advance in cardiac tissue engineering by developing novel nano-guided approaches for vascularization in myocardium regeneration as well as non-invasive and quantitative monitoring techniques for longitudinal studies on the cardiac patch implanted in animal model and eventually in human patients
    • …
    corecore