34 research outputs found

    Individual And Ensemble Pattern Classification Models Using Enhanced Fuzzy Min-Max Neural Networks

    Get PDF
    Pattern classification is one of the major components for the design and development of a computerized pattern recognition system. Focused on computational intelligence models, this thesis describes in-depth investigations on two possible directions to design robust and flexible pattern classification models with high performance. Firstly is by enhancing the learning algorithm of a neural-fuzzy network; and secondly by devising an ensemble model to combine the predictions from multiple neural-fuzzy networks using an agent-based framework. Owing to a number of salient features which include the ability of learning incrementally and establishing nonlinear decision boundary with hyperboxes, the Fuzzy Min-Max (FMM) network is selected as the backbone for designing useful and usable pattern classification models in this research. Two enhanced FMM variants, i.e. EFMM and EFMM2, are proposed to address a number of limitations in the original FMM learning algorithm. In EFMM, three heuristic rules are introduced to improve the hyperbox expansion, overlap test, and contraction processes. The network complexity and noise tolerance issues are undertaken in EFMM2. In addition, an agent-based framework is capitalized as a robust ensemble model to house multiple EFMM-based networks. A useful trust measurement method known as Certified Belief in Strength (CBS) is developed and incorporated into the ensemble model for exploiting the predictive performances of different EFMM-based networks

    A comparative study of general fuzzy min-max neural networks for pattern classification problems

    Full text link
    © 2019 Elsevier B.V. General fuzzy min-max (GFMM) neural network is a generalization of fuzzy neural networks formed by hyperbox fuzzy sets for classification and clustering problems. Two principle algorithms are deployed to train this type of neural network, i.e., incremental learning and agglomerative learning. This paper presents a comprehensive empirical study of performance influencing factors, advantages, and drawbacks of the general fuzzy min-max neural network on pattern classification problems. The subjects of this study include (1) the impact of maximum hyperbox size, (2) the influence of the similarity threshold and measures on the agglomerative learning algorithm, (3) the effect of data presentation order, (4) comparative performance evaluation of the GFMM with other types of fuzzy min-max neural networks and prevalent machine learning algorithms. The experimental results on benchmark datasets widely used in machine learning showed overall strong and weak points of the GFMM classifier. These outcomes also informed potential research directions for this class of machine learning algorithms in the future

    An improved online learning algorithm for general fuzzy min-max neural network

    Full text link
    This paper proposes an improved version of the current online learning algorithm for a general fuzzy min-max neural network (GFMM) to tackle existing issues concerning expansion and contraction steps as well as the way of dealing with unseen data located on decision boundaries. These drawbacks lower its classification performance, so an improved algorithm is proposed in this study to address the above limitations. The proposed approach does not use the contraction process for overlapping hyperboxes, which is more likely to increase the error rate as shown in the literature. The empirical results indicated the improvement in the classification accuracy and stability of the proposed method compared to the original version and other fuzzy min-max classifiers. In order to reduce the sensitivity to the training samples presentation order of this new on-line learning algorithm, a simple ensemble method is also proposed.Comment: 9 pages, 8 tables, 6 figure

    An Effective Multi-Resolution Hierarchical Granular Representation based Classifier using General Fuzzy Min-Max Neural Network

    Full text link
    IEEE Motivated by the practical demands for simplification of data towards being consistent with human thinking and problem solving as well as tolerance of uncertainty, information granules are becoming important entities in data processing at different levels of data abstraction. This paper proposes a method to construct classifiers from multi-resolution hierarchical granular representations (MRHGRC) using hyperbox fuzzy sets. The proposed approach forms a series of granular inferences hierarchically through many levels of abstraction. An attractive characteristic of our classifier is that it can maintain a high accuracy in comparison to other fuzzy min-max models at a low degree of granularity based on reusing the knowledge learned from lower levels of abstraction. In addition, our approach can reduce the data size significantly as well as handle the uncertainty and incompleteness associated with data in real-world applications. The construction process of the classifier consists of two phases. The first phase is to formulate the model at the greatest level of granularity, while the later stage aims to reduce the complexity of the constructed model and deduce it from data at higher abstraction levels. Experimental analyses conducted comprehensively on both synthetic and real datasets indicated the efficiency of our method in terms of training time and predictive performance in comparison to other types of fuzzy min-max neural networks and common machine learning algorithms

    An Adaptive Fuzzy Min-Max Neural Network Classifier Based on Principle Component Analysis and Adaptive Genetic Algorithm

    Get PDF
    A novel adaptive fuzzy min-max neural network classifier called AFMN is proposed in this paper. Combined with principle component analysis and adaptive genetic algorithm, this integrated system can serve as a supervised and real-time classification technique. Considering the loophole in the expansion-contraction process of FMNN and GFMN and the overcomplex network architecture of FMCN, AFMN maintains the simple architecture of FMNN for fast learning and testing while rewriting the membership function, the expansion and contraction rules for hyperbox generation to solve the confusion problems in the hyperbox overlap region. Meanwhile, principle component analysis is adopted to finish dataset dimensionality reduction for increasing learning efficiency. After training, the confidence coefficient of each hyperbox is calculated based on the distribution of samples. During classifying procedure, utilizing adaptive genetic algorithm to complete parameter optimization for AFMN can also fasten the entire procedure than traversal method. For conditions where training samples are insufficient, data core weight updating is indispensible to enhance the robustness of classifier and the modified membership function can adjust itself according to the input varieties. The paper demonstrates the performance of AFMN through substantial examples in terms of classification accuracy and operating speed by comparing it with FMNN, GFMN, and FMCN

    Ship target recognition

    Get PDF
    Includes bibliographical references.In this report the classification of ship targets using a low resolution radar system is investigated. The thesis can be divided into two major parts. The first part summarizes research into the applications of neural networks to the low resolution non-cooperative ship target recognition problem. Three very different neural architectures are investigated and compared, namely; the Feedforward Network with Back-propagation, Kohonen's Supervised Learning Vector Quantization Network, and Simpson's Fuzzy Min-Max neural network. In all cases, pre-processing in the form of the Fourier-Modified Discrete Mellin Transform is used as a means of extracting feature vectors which are insensitive to the aspect angle of the radar. Classification tests are based on both simulated and real data. Classification accuracies of up to 93 are reported. The second part is of a purely investigative nature, and summarizes a body of research aimed at exploring new ground. The crux of this work is centered on the proposal to use synthetic range profiling in order to achieve a much higher range resolution (and hence better classification accuracies). Included in this work is a comprehensive investigation into the use of super-resolution and noise reducing eigendecomposition techniques. Algorithms investigated include the Principal Eigenvector Method, the Total Least Squares Method, and the MUSIC method. A final proposal for future research and development concerns the use of time domain averaging to improve the classification performance of the radar system. The use of an iterative correlation algorithm is investigated

    A multidimensional data descriptor tool based on fuzzy min max neural network algorithm

    Get PDF
    The purpose of this project is to introduce different techniques and methods that have been used before to analyze the data. The main objective is to build an data analytic tool for a multidimensional dataset. In this project, the technique that will be used is Fuzzy Min Max method. By using this method, the data visualization will displaying the minimum and maximum value in range of zero to one. In this project, it will be compare a few techniques and determine which techniques is the most suitable. The techniques is in the Neural Network which has a few popular techniques such as K-Nearest Neighbour Fuzzy Min Max, general Reflex Fuzzy Min Max to get some idea of methodologies, algorithm, techniques and concept of the whole existing project and research study. Besides that, in this paper, it will also compare three existing system such as Tableau Public, Qlikview and IBM InfoSphere Streams. They have been compare for their advantages and disadvantages. The implementation of Fuzzy Min Max Neural Network technique has been applied using Matlab Programming. Therefore, in this project, it will explain more about why I am using the Fuzzy Min Max method rather than other methods
    corecore