133 research outputs found

    Improving the Evaluation Performance of Space-Time Trellis Code through STTC Visualisation Tool

    Full text link

    Robotic Crop Interaction in Agriculture for Soft Fruit Harvesting

    Get PDF
    Autonomous tree crop harvesting has been a seemingly attainable, but elusive, robotics goal for the past several decades. Limiting grower reliance on uncertain seasonal labour is an economic driver of this, but the ability of robotic systems to treat each plant individually also has environmental benefits, such as reduced emissions and fertiliser use. Over the same time period, effective grasping and manipulation (G&M) solutions to warehouse product handling, and more general robotic interaction, have been demonstrated. Despite research progress in general robotic interaction and harvesting of some specific crop types, a commercially successful robotic harvester has yet to be demonstrated. Most crop varieties, including soft-skinned fruit, have not yet been addressed. Soft fruit, such as plums, present problems for many of the techniques employed for their more robust relatives and require special focus when developing autonomous harvesters. Adapting existing robotics tools and techniques to new fruit types, including soft skinned varieties, is not well explored. This thesis aims to bridge that gap by examining the challenges of autonomous crop interaction for the harvesting of soft fruit. Aspects which are known to be challenging include mixed obstacle planning with both hard and soft obstacles present, poor outdoor sensing conditions, and the lack of proven picking motion strategies. Positioning an actuator for harvesting requires solving these problems and others specific to soft skinned fruit. Doing so effectively means addressing these in the sensing, planning and actuation areas of a robotic system. Such areas are also highly interdependent for grasping and manipulation tasks, so solutions need to be developed at the system level. In this thesis, soft robotics actuators, with simplifying assumptions about hard obstacle planes, are used to solve mixed obstacle planning. Persistent target tracking and filtering is used to overcome challenging object detection conditions, while multiple stages of object detection are applied to refine these initial position estimates. Several picking motions are developed and tested for plums, with varying degrees of effectiveness. These various techniques are integrated into a prototype system which is validated in lab testing and extensive field trials on a commercial plum crop. Key contributions of this thesis include I. The examination of grasping & manipulation tools, algorithms, techniques and challenges for harvesting soft skinned fruit II. Design, development and field-trial evaluation of a harvester prototype to validate these concepts in practice, with specific design studies of the gripper type, object detector architecture and picking motion for this III. Investigation of specific G&M module improvements including: o Application of the autocovariance least squares (ALS) method to noise covariance matrix estimation for visual servoing tasks, where both simulated and real experiments demonstrated a 30% improvement in state estimation error using this technique. o Theory and experimentation showing that a single range measurement is sufficient for disambiguating scene scale in monocular depth estimation for some datasets. o Preliminary investigations of stochastic object completion and sampling for grasping, active perception for visual servoing based harvesting, and multi-stage fruit localisation from RGB-Depth data. Several field trials were carried out with the plum harvesting prototype. Testing on an unmodified commercial plum crop, in all weather conditions, showed promising results with a harvest success rate of 42%. While a significant gap between prototype performance and commercial viability remains, the use of soft robotics with carefully chosen sensing and planning approaches allows for robust grasping & manipulation under challenging conditions, with both hard and soft obstacles

    Unravelling black box machine learning methods using biplots

    Get PDF
    Following the development of new mathematical techniques, the improvement of computer processing power and the increased availability of possible explanatory variables, the financial services industry is moving toward the use of new machine learning methods, such as neural networks, and away from older methods such as generalised linear models. However, their use is currently limited because they are seen as “black box” models, which gives predictions without justifications and which are therefore not understood and cannot be trusted. The goal of this dissertation is to expand on the theory and use of biplots to visualise the impact of the various input factors on the output of the machine learning black box. Biplots are used because they give an optimal two-dimensional representation of the data set on which the machine learning model is based.The biplot allows every point on the biplot plane to be converted back to the original ��-dimensions – in the same format as is used by the machine learning model. This allows the output of the model to be represented by colour coding each point on the biplot plane according to the output of an independently calibrated machine learning model. The interaction of the changing prediction probabilities – represented by the coloured output – in relation to the data points and the variable axes and category level points represented on the biplot, allows the machine learning model to be globally and locally interpreted. By visualing the models and their predictions, this dissertation aims to remove the stigma of calling non-linear models “black box” models and encourage their wider application in the financial services industry

    The review of heterogeneous design frameworks/Platforms for digital systems embedded in FPGAs and SoCs

    Get PDF
    Systems-on-a-chip integrate specialized modules to provide well-defined functionality. In order to guarantee its efficiency, designersare careful to choose high-level electronic components. In particular,FPGAs (field-programmable gate array) have demonstrated theirability to meet the requirements of emerging technology. However,traditional design methods cannot keep up with the speed andefficiency imposed by the embedded systems industry, so severalframeworks have been developed to simplify the design process of anelectronic system, from its modeling to its physical implementation.This paper illustrates some of them and presents a comparative studybetween them. Indeed, we have selected design methods of SoC(ESP4ML and HLS4ML, OpenESP, LiteX, RubyRTL, PyMTL,SysPy, PyRTL, DSSoC) and NoC networks on OCN chip (PyOCN)and in general on FPGA (PRGA, OpenFPGA, AnyHLS, PYNQ, andPyLog).The objective of this article is to analyze each tool at several levelsand to discuss the benefit of each in the scientific community. Wewill analyze several aspects constituting the architecture and thestructure of the platforms to make a comparative study of thehardware and software design flows of digital systems.

    Specific Guidelines for Stenlose Syd

    Get PDF

    Forward Error Correction for High Capacity Transmission Systems

    Get PDF
    Αυτή η μελέτη διερευνά την αλληλεπίδραση μεταξύ FEC διόρθωσης σφαλμάτων προώθησης και ψηφιακού αντιστάθμιση μη γραμμικότητας DBP σε ένα κανάλι ινών μεγάλων αποστάσεων. Πρώτον, α Η προσέγγιση που βασίζεται στην έρευνα χρησιμοποιείται για τον προσδιορισμό των τεχνολογιών αιχμής στο FEC για το κανάλι ινών και προσαρμόστε τα στο τελικό σχέδιο. Οι σχεδιαστικές επιλογές περιλαμβάνουν το χρήση τετριμμένων bit κωδικοποιημένης διαμόρφωσης αρχιτεκτονικής T-BICM με συνενωμένη σχήμα κώδικα που χρησιμοποιεί έναν επαναληπτικό soft αποκωδικοποιητή. Η απαίτηση για συνενωμένη Η εφαρμογή FEC οδήγησε σε μια άλλη έρευνα για έναν κώδικα καλής απόδοσης συνδυασμός. Το ακανόνιστο LDPC και το οιονεί κυκλικό QC-LDPC, που υιοθετήθηκαν από το DVB-S2 και Τα πρότυπα IEEE 802.11, αντίστοιχα, συνδυάστηκαν με τον κώδικα σκάλας και σύγκριση με βάση τις επιτευχθείσες επιδόσεις. Αποδεικνύουμε ότι αυξάνοντας τις ίνες απόσταση μετάδοσης κατά 1/3, από 300km έως 400km, διατηρώντας παράλληλα την η ίδια απόδοση και η χρήση των ίδιων γενικών εξόδων, δηλαδή 27,5% είναι εφικτό όταν υλοποίηση του DBP με 2 βήματα/περιοχή ή 3 βήματα/περιοχή, ανάλογα με το αν το Οι επαναλήψεις αποκωδικοποίησης είναι 10 ή 5. Αυτή η μελέτη καταλήγει με την εύνοια του LDPC από το DVB-S2 πάνω από το QC-LDPC του IEEE 802.11 για κανάλι ινών μεγάλων αποστάσεων. Το συμπέρασμα βγαίνει με βάση σχετικά με την καλύτερη απόδοση για το LDPC-DVB, λόγω των μεγάλων μηκών κωδικών του και του υποστήριξη για υψηλούς ρυθμούς κωδικοποίησης με αποτέλεσμα χαμηλές γενικές απαιτήσειςThis study investigates the interplay between forward error correction FEC and digital back-propagation DBP nonlinearity compensation on a long-haul fibre channel. First, a research-based approach is used to identify the state-of-the-art technologies in FEC for the fibre channel and adapt them to the final design. The design choices includes the usage of trivial bit interleaved coded modulation T-BICM architecture with a concatenated code scheme that uses an iterative soft decoder. The requirement for a concatenated FEC implementation motivated another investigation of a well-performing code combination. The Irregular LDPC and quasi-cyclic QC-LDPC, adopted from DVB-S2 and IEEE 802.11 standards, respectively, were each concatenated with staircase code and compared based on the attained performance. We prove that increasing the fibre transmission distance by a factor of 1/3, from 300km to 400km, while maintaining the same performance and using the same overhead, i.e. 27.5\% is achievable when implementing DBP with 2 steps/span or 3 steps/span, depending on whether the decoding iterations are 10 or 5. This study concludes with favouring LDPC from DVB-S2 over IEEE 802.11's QC-LDPC for long haul fibre channel. The conclusion is made based on the better attained performance for LDPC-DVB, due to its long code lengths, and its support for high coding rates resulting low overhead requirement

    Verdant Home: Growing Elements of Architecture

    No full text
    ‘Verdant Home’ explores how the design of residential architecture can evoke the senses through the integration of the garden with the house. This research challenges the use of New Zealand native and exotic plant species as merely an addition to architecture; instead creating stimulating and efficacious verdant elements (components) as part of the architecture. Two concerns provoked investigations into this subject. Firstly, a concern for the gradually occurring loss of vegetation amongst city residences, and secondly a concern for the way in which green elements are often added to buildings, without consideration of how they could sensually transform and improve the aesthetics of space and context. The final refined solution addresses these concerns by incorporating verdant components in an advantageous way, creating a new typology of residential home for New Zealand. Modern architectural technologies allow conventionally separate garden spaces to be integrated with building forms, removing the need for separate garden spaces. These technologies provide humans with the positive environmental benefits of plants within interior spaces. This thesis builds on these benefits, providing ideas for enhancing spatial experiences within the home by merging programmatic use with the pleasurable qualities of gardens. Presented at the outset of the thesis is evidence supporting the physical and mental benefits of everyday human contact with nature. The pursuit for a way in which architecture can encompass verdant elements as integral components of the home is explored through a review of garden history and theory. This review provides specific inspiration for the creation of splendid spaces, spaces which manipulate dimension and materials, sensually practical spaces and statement spaces in the design of a residential home. Following this, buildings from various time periods and locations which innovatively incorporate vegetation are evaluated. An analysis of the New Zealand architectural context and its relationship to gardens is then completed, leading to designs which incorporate all of this research. This thesis challenges the current use of verdant elements such as: living walls, roofs and facades. Whilst these are beneficial technologies, there is potential for them to have an increased atmospheric effect on the spaces they are part of. New aesthetic possibilities are focused on through the designs, which utilise principles of historical garden design typologies to sensually integrate verdant technologies. This results in the creation of aesthetically engaging verdant home solutions
    corecore