2,657 research outputs found

    Quantifying Equity Risk Premia: Financial Economic Theory and High-Dimensional Statistical Methods

    Get PDF
    The overarching question of this dissertation is how to quantify the unobservable risk premium of a stock when its return distribution varies over time. The first chapter, titled “Theory-based versus machine learning-implied stock risk premia”, starts with a comparison of two competing strands of the literature. The approach advocated by Martin and Wagner (2019) relies on financial economic theory to derive a closed-form approximation of conditional risk premia using information embedded in the prices of European options. The other approach, exemplified by the study of Gu et al. (2020), draws on the flexibility of machine learning methods and vast amounts of historical data to determine the unknown functional form. The goal of this study is to determine which of the two approaches produces more accurate measurements of stock risk premia. In addition, we present a novel hybrid approach that employs machine learning to overcome the approximation errors induced by the theory-based approach. We find that our hybrid approach is competitive especially at longer investment horizons. The second chapter, titled “The uncertainty principle in asset pricing”, introduces a representation of the conditional capital asset pricing model (CAPM) in which the betas and the equity premium are jointly characterized by the information embedded in option prices. A unique feature of our model is that its implied components represent valid measurements of their physical counterparts without the need for any further risk adjustment. Moreover, because the model’s time-varying parameters are directly observable, the model can be tested without any of the complications that typically arise from statistical estimation. One of the main empirical findings is that the well-known flat relationship between average predicted and realized excess returns of beta-sorted portfolios can be explained by the uncertainty governing market excess returns. In the third chapter, titled “Multi-task learning in cross-sectional regressions”, we challenge the way in which cross-sectional regressions are used to test factor models with time-varying loadings. More specifically, we extend the procedure by Fama and MacBeth (1973) by systematically selecting stock characteristics using a combination of l1- and l2-regularization, known as the multi-task Lasso, and addressing the bias that is induced by selection via repeated sample splitting. In the empirical part of this chapter, we apply our testing procedure to the option-implied CAPM from chapter two, and find that, while variants of the momentum effect lead to a rejection of the model, the implied beta is by far the most important predictor of cross-sectional return variation

    Backpropagation Beyond the Gradient

    Get PDF
    Automatic differentiation is a key enabler of deep learning: previously, practitioners were limited to models for which they could manually compute derivatives. Now, they can create sophisticated models with almost no restrictions and train them using first-order, i. e. gradient, information. Popular libraries like PyTorch and TensorFlow compute this gradient efficiently, automatically, and conveniently with a single line of code. Under the hood, reverse-mode automatic differentiation, or gradient backpropagation, powers the gradient computation in these libraries. Their entire design centers around gradient backpropagation. These frameworks are specialized around one specific task—computing the average gradient in a mini-batch. This specialization often complicates the extraction of other information like higher-order statistical moments of the gradient, or higher-order derivatives like the Hessian. It limits practitioners and researchers to methods that rely on the gradient. Arguably, this hampers the field from exploring the potential of higher-order information and there is evidence that focusing solely on the gradient has not lead to significant recent advances in deep learning optimization. To advance algorithmic research and inspire novel ideas, information beyond the batch-averaged gradient must be made available at the same level of computational efficiency, automation, and convenience. This thesis presents approaches to simplify experimentation with rich information beyond the gradient by making it more readily accessible. We present an implementation of these ideas as an extension to the backpropagation procedure in PyTorch. Using this newly accessible information, we demonstrate possible use cases by (i) showing how it can inform our understanding of neural network training by building a diagnostic tool, and (ii) enabling novel methods to efficiently compute and approximate curvature information. First, we extend gradient backpropagation for sequential feedforward models to Hessian backpropagation which enables computing approximate per-layer curvature. This perspective unifies recently proposed block- diagonal curvature approximations. Like gradient backpropagation, the computation of these second-order derivatives is modular, and therefore simple to automate and extend to new operations. Based on the insight that rich information beyond the gradient can be computed efficiently and at the same time, we extend the backpropagation in PyTorch with the BackPACK library. It provides efficient and convenient access to statistical moments of the gradient and approximate curvature information, often at a small overhead compared to computing just the gradient. Next, we showcase the utility of such information to better understand neural network training. We build the Cockpit library that visualizes what is happening inside the model during training through various instruments that rely on BackPACK’s statistics. We show how Cockpit provides a meaningful statistical summary report to the deep learning engineer to identify bugs in their machine learning pipeline, guide hyperparameter tuning, and study deep learning phenomena. Finally, we use BackPACK’s extended automatic differentiation functionality to develop ViViT, an approach to efficiently compute curvature information, in particular curvature noise. It uses the low-rank structure of the generalized Gauss-Newton approximation to the Hessian and addresses shortcomings in existing curvature approximations. Through monitoring curvature noise, we demonstrate how ViViT’s information helps in understanding challenges to make second-order optimization methods work in practice. This work develops new tools to experiment more easily with higher-order information in complex deep learning models. These tools have impacted works on Bayesian applications with Laplace approximations, out-of-distribution generalization, differential privacy, and the design of automatic differentia- tion systems. They constitute one important step towards developing and establishing more efficient deep learning algorithms

    Language integrated relational lenses

    Get PDF
    Relational databases are ubiquitous. Such monolithic databases accumulate large amounts of data, yet applications typically only work on small portions of the data at a time. A subset of the database defined as a computation on the underlying tables is called a view. Querying views is helpful, but it is also desirable to update them and have these changes be applied to the underlying database. This view update problem has been the subject of much previous work before, but support by database servers is limited and only rarely available. Lenses are a popular approach to bidirectional transformations, a generalization of the view update problem in databases to arbitrary data. However, perhaps surprisingly, lenses have seldom actually been used to implement updatable views in databases. Bohannon, Pierce and Vaughan propose an approach to updatable views called relational lenses. However, to the best of our knowledge this proposal has not been implemented or evaluated prior to the work reported in this thesis. This thesis proposes programming language support for relational lenses. Language integrated relational lenses support expressive and efficient view updates, without relying on updatable view support from the database server. By integrating relational lenses into the programming language, application development becomes easier and less error-prone, avoiding the impedance mismatch of having two programming languages. Integrating relational lenses into the language poses additional challenges. As defined by Bohannon et al. relational lenses completely recompute the database, making them inefficient as the database scales. The other challenge is that some parts of the well-formedness conditions are too general for implementation. Bohannon et al. specify predicates using possibly infinite abstract sets and define the type checking rules using relational algebra. Incremental relational lenses equip relational lenses with change-propagating semantics that map small changes to the view into (potentially) small changes to the source tables. We prove that our incremental semantics are functionally equivalent to the non-incremental semantics, and our experimental results show orders of magnitude improvement over the non-incremental approach. This thesis introduces a concrete predicate syntax and shows how the required checks are performed on these predicates and show that they satisfy the abstract predicate specifications. We discuss trade-offs between static predicates that are fully known at compile time vs dynamic predicates that are only known during execution and introduce hybrid predicates taking inspiration from both approaches. This thesis adapts the typing rules for relational lenses from sequential composition to a functional style of sub-expressions. We prove that any well-typed functional relational lens expression can derive a well-typed sequential lens. We use these additions to relational lenses as the foundation for two practical implementations: an extension of the Links functional language and a library written in Haskell. The second implementation demonstrates how type-level computation can be used to implement relational lenses without changes to the compiler. These two implementations attest to the possibility of turning relational lenses into a practical language feature

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ïŹfth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ïŹelds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiïŹed Proportional ConïŹ‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiïŹers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiïŹcation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiïŹcation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiïŹcation, and hybrid techniques mixing deep learning with belief functions as well

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    A Kernel Perspective on Behavioural Metrics for Markov Decision Processes

    Full text link
    Behavioural metrics have been shown to be an effective mechanism for constructing representations in reinforcement learning. We present a novel perspective on behavioural metrics for Markov decision processes via the use of positive definite kernels. We leverage this new perspective to define a new metric that is provably equivalent to the recently introduced MICo distance (Castro et al., 2021). The kernel perspective further enables us to provide new theoretical results, which has so far eluded prior work. These include bounding value function differences by means of our metric, and the demonstration that our metric can be provably embedded into a finite-dimensional Euclidean space with low distortion error. These are two crucial properties when using behavioural metrics for reinforcement learning representations. We complement our theory with strong empirical results that demonstrate the effectiveness of these methods in practice.Comment: Published in TML

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster
    • 

    corecore