76 research outputs found

    Using Ontologies for the Design of Data Warehouses

    Get PDF
    Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations we have faced up with in real-world projects in which we believe that the use of ontologies will improve several aspects of the design of data warehouses. The aim of this article is to describe several shortcomings of current data warehouse design approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for discussing the convenience of using ontologies in data warehouse design.Comment: 15 pages, 2 figure

    A Prototyped NL-Based Approach for the Design of Multidimensional Data Warehouse

    Get PDF
    Organizations are more and more interested in the Data Warehouse (DW) technology and data analytics to base their decision-making processes on scientific arguments instead of intuition. Despite the efforts invested, the DW design issue remains a great challenging research domain. The design quality of the DW depends on several aspects, as the requirement gathering. In this context, we propose a Natural Language (NL) based design approach, which is twofold, first, it facilitates the involvement of the decision-makers in the DW design process; indeed, NL can encourage the decision-makers to express their requirements as English-like sentences conform to NL-templates. Secondly, our approach aims to generate semi-automatically a DW schema from a set of requirements gathered as analytical queries compliant to the NL-templates. This design approach relies on (i) two easy-to-use NL-templates to specifying the analysis components, and (ii) a set of five heuristic rules for extracting the multidimensional concepts from the requirements. We demonstrate the feasibility of our approach by developing the prototype Natural Language Decisional Requirements to DW Schema (NLDR2DWS)

    Enrichment of the Phenotypic and Genotypic Data Warehouse analysis using Question Answering systems to facilitate the decision making process in cereal breeding programs

    Get PDF
    Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.This paper has been partially supported by the MESOLAP (TIN2010-14860) and GEODAS-BI (TIN2012-37493-C03-03) projects from the Spanish Ministry of Education and Competitivity. Alejandro Maté is funded by the Generalitat Valenciana under an ACIF grant (ACIF/2010/298)

    Exploiting Transitivity in Probabilistic Models for Ontology Learning

    Get PDF
    Capturing word meaning is one of the challenges of natural language processing (NLP). Formal models of meaning such as ontologies are knowledge repositories used in a variety of applications. To be effectively used, these ontologies have to be large or, at least, adapted to specific domains. Our main goal is to contribute practically to the research on ontology learning models by covering different aspects of the task. We propose probabilistic models for learning ontologies that expands existing ontologies taking into accounts both corpus-extracted evidences and structure of the generated ontologies. The model exploits structural properties of target relations such as transitivity during learning. We then propose two extensions of our probabilistic models: a model for learning from a generic domain that can be exploited to extract new information in a specific domain and an incremental ontology learning system that put human validations in the learning loop. This latter provides a graphical user interface and a human-computer interaction workflow supporting the incremental leaning loop

    Benchmarking Ontologies: Bigger or Better?

    Get PDF
    A scientific ontology is a formal representation of knowledge within a domain, typically including central concepts, their properties, and relations. With the rise of computers and high-throughput data collection, ontologies have become essential to data mining and sharing across communities in the biomedical sciences. Powerful approaches exist for testing the internal consistency of an ontology, but not for assessing the fidelity of its domain representation. We introduce a family of metrics that describe the breadth and depth with which an ontology represents its knowledge domain. We then test these metrics using (1) four of the most common medical ontologies with respect to a corpus of medical documents and (2) seven of the most popular English thesauri with respect to three corpora that sample language from medicine, news, and novels. Here we show that our approach captures the quality of ontological representation and guides efforts to narrow the breach between ontology and collective discourse within a domain. Our results also demonstrate key features of medical ontologies, English thesauri, and discourse from different domains. Medical ontologies have a small intersection, as do English thesauri. Moreover, dialects characteristic of distinct domains vary strikingly as many of the same words are used quite differently in medicine, news, and novels. As ontologies are intended to mirror the state of knowledge, our methods to tighten the fit between ontology and domain will increase their relevance for new areas of biomedical science and improve the accuracy and power of inferences computed across them

    Exploiting transitivity in probabilistic models for ontology learning

    Get PDF
    Nel natural language processing (NLP) catturare il significato delle parole è una delle sfide a cui i ricercatori sono largamente interessati. Le reti semantiche di parole o concetti, che strutturano in modo formale la conoscenza, sono largamente utilizzate in molte applicazioni. Per essere effettivamente utilizzate, in particolare nei metodi automatici di apprendimento, queste reti semantiche devono essere di grandi dimensioni o almeno strutturare conoscenza di domini molto specifici. Il nostro principale obiettivo è contribuire alla ricerca di metodi di apprendimento di reti semantiche concentrandosi in differenti aspetti. Proponiamo un nuovo modello probabilistico per creare o estendere reti semantiche che prende contemporaneamente in considerazine sia le evidenze estratte nel corpus sia la struttura della rete semantiche considerata nel training. In particolare il nostro modello durante l'apprendimento sfrutta le proprietà strutturali, come la transitività, delle relazioni che legano i nodi della nostra rete. La formulazione della probabilità che una data relazione tra due istanze appartiene alla rete semantica dipenderà da due probabilità: la probabilità diretta stimata delle evidenze del corpus e la probabilità indotta che deriva delle proprietà strutturali della relazione presa in considerazione. Il modello che proponiano introduce alcune innovazioni nella stima di queste probabilità. Proponiamo anche un modello che può essere usato per apprendere conoscenza in differenti domini di interesse senza un grande effort aggiuntivo per l'adattamento. In particolare, nell'approccio che proponiamo, si apprende un modello da un dominio generico e poi si sfrutta tale modello per estrarre nuova conoscenza in un dominio specifico. Infine proponiamo Semantic Turkey Ontology Learner (ST-OL): un sistema di apprendimento di ontologie incrementale. Mediante ontology editor, ST-OL fornisce un efficiente modo di interagire con l'utente finale e inserire le decisioni di tale utente nel loop dell'apprendimento. Inoltre il modello probabilistico integrato in ST-OL permette di sfruttare la transitività delle relazioni per indurre migliori modelli di estrazione. Mediante degli esperimenti dimostriamo che tutti i modelli che proponiamo danno un reale contributo ai differenti task che consideriamo migliorando le prestazioni.Capturing word meaning is one of the challenges of natural language processing (NLP). Formal models of meaning such as semantic networks of words or concepts are knowledge repositories used in a variety of applications. To be effectively used, these networks have to be large or, at least, adapted to specific domains. Our main goal is to contribute practically to the research on semantic networks learning models by covering different aspects of the task. We propose a novel probabilistic model for learning semantic networks that expands existing semantic networks taking into accounts both corpus-extracted evidences and the structure of the generated semantic networks. The model exploits structural properties of target relations such as transitivity during learning. The probability for a given relation instance to belong to the semantic networks of words depends both on its direct probability and on the induced probability derived from the structural properties of the target relation. Our model presents some innovations in estimating these probabilities. We also propose a model that can be used in different specific knowledge domains with a small effort for its adaptation. In this approach a model is learned from a generic domain that can be exploited to extract new informations in a specific domain. Finally, we propose an incremental ontology learning system: Semantic Turkey Ontology Learner (ST-OL). ST-OL addresses two principal issues. The first issue is an efficient way to interact with final users and, then, to put the final users decisions in the learning loop. We obtain this positive interaction using an ontology editor. The second issue is a probabilistic learning semantic networks of words model that exploits transitive relations for inducing better extraction models. ST-OL provides a graphical user interface and a human- computer interaction workflow supporting the incremental leaning loop of our learning semantic networks of words

    Trustworthiness in Social Big Data Incorporating Semantic Analysis, Machine Learning and Distributed Data Processing

    Get PDF
    This thesis presents several state-of-the-art approaches constructed for the purpose of (i) studying the trustworthiness of users in Online Social Network platforms, (ii) deriving concealed knowledge from their textual content, and (iii) classifying and predicting the domain knowledge of users and their content. The developed approaches are refined through proof-of-concept experiments, several benchmark comparisons, and appropriate and rigorous evaluation metrics to verify and validate their effectiveness and efficiency, and hence, those of the applied frameworks

    Understanding Patient Safety Reports via Multi-label Text Classification and Semantic Representation

    Get PDF
    Medical errors are the results of problems in health care delivery. One of the key steps to eliminate errors and improve patient safety is through patient safety event reporting. A patient safety report may record a number of critical factors that are involved in the health care when incidents, near misses, and unsafe conditions occur. Therefore, clinicians and risk management can generate actionable knowledge by harnessing useful information from reports. To date, efforts have been made to establish a nationwide reporting and error analysis mechanism. The increasing volume of reports has been driving improvement in quantity measures of patient safety. For example, statistical distributions of errors across types of error and health care settings have been well documented. Nevertheless, a shift to quality measure is highly demanded. In a health care system, errors are likely to occur if one or more components (e.g., procedures, equipment, etc.) that are intrinsically associated go wrong. However, our understanding of what and how these components are connected is limited for at least two reasons. Firstly, the patient safety reports present difficulties in aggregate analysis since they are large in volume and complicated in semantic representation. Secondly, an efficient and clinically valuable mechanism to identify and categorize these components is absent. I strive to make my contribution by investigating the multi-labeled nature of patient safety reports. To facilitate clinical implementation, I propose that machine learning and semantic information of reports, e.g., semantic similarity between terms, can be used to jointly perform automated multi-label classification. My work is divided into three specific aims. In the first aim, I developed a patient safety ontology to enhance semantic representation of patient safety reports. The ontology supports a number of applications including automated text classification. In the second aim, I evaluated multilabel text classification algorithms on patient safety reports. The results demonstrated a list of productive algorithms with balanced predictive power and efficiency. In the third aim, to improve the performance of text classification, I developed a framework for incorporating semantic similarity and kernel-based multi-label text classification. Semantic similarity values produced by different semantic representation models are evaluated in the classification tasks. Both ontology-based and distributional semantic similarity exerted positive influence on classification performance but the latter one shown significant efficiency in terms of the measure of semantic similarity. Our work provides insights into the nature of patient safety reports, that is a report can be labeled by multiple components (e.g., different procedures, settings, error types, and contributing factors) it contains. Multi-labeled reports hold promise to disclose system vulnerabilities since they provide the insight of the intrinsically correlated components of health care systems. I demonstrated the effectiveness and efficiency of the use of automated multi-label text classification embedded with semantic similarity information on patient safety reports. The proposed solution holds potential to incorporate with existing reporting systems, significantly reducing the workload of aggregate report analysis

    Opinion mining with the SentWordNet lexical resource

    Get PDF
    Sentiment classification concerns the application of automatic methods for predicting the orientation of sentiment present on text documents. It is an important subject in opinion mining research, with applications on a number of areas including recommender and advertising systems, customer intelligence and information retrieval. SentiWordNet is a lexical resource of sentiment information for terms in the English language designed to assist in opinion mining tasks, where each term is associated with numerical scores for positive and negative sentiment information. A resource that makes term level sentiment information readily available could be of use in building more effective sentiment classification methods. This research presents the results of an experiment that applied the SentiWordNet lexical resource to the problem of automatic sentiment classification of film reviews. First, a data set of relevant features extracted from text documents using SentiWordNet was designed and implemented. The resulting feature set is then used as input for training a support vector machine classifier for predicting the sentiment orientation of the underlying film review. Several scenarios exploring variations on the parameters that generate the data set, outlier removal and feature selection were executed. The results obtained are compared to other methods documented in the literature. It was found that they are in line with other experiments that propose similar approaches and use the same data set of film reviews, indicating SentiWordNet could become an important resource for the task of sentiment classification. Considerations on future improvements are also presented based on a detailed analysis of classification results
    • …
    corecore