1,019 research outputs found

    Overcomplete Dictionary and Deep Learning Approaches to Image and Video Analysis

    Get PDF
    Extracting useful information while ignoring others (e.g. noise, occlusion, lighting) is an essential and challenging data analyzing step for many computer vision tasks such as facial recognition, scene reconstruction, event detection, image restoration, etc. Data analyzing of those tasks can be formulated as a form of matrix decomposition or factorization to separate useful and/or fill in missing information based on sparsity and/or low-rankness of the data. There has been an increasing number of non-convex approaches including conventional matrix norm optimizing and emerging deep learning models. However, it is hard to optimize the ideal l0-norm or learn the deep models directly and efficiently. Motivated from this challenging process, this thesis proposes two sets of approaches: conventional and deep learning based. For conventional approaches, this thesis proposes a novel online non-convex lp-norm based Robust PCA (OLP-RPCA) approach for matrix decomposition, where 0 < p < 1. OLP-RPCA is developed from the offline version LP-RPCA. A robust face recognition framework is also developed from Robust PCA and sparse coding approaches. More importantly, OLP-RPCA method can achieve real-time performance on large-scale data without parallelizing or implementing on a graphics processing unit. We mathematically and empirically show that our OLP-RPCA algorithm is linear in both the sample dimension and the number of samples. The proposed OLP-RPCA and LP-RPCA approaches are evaluated in various applications including Gaussian/non-Gaussian image denoising, face modeling, real-time background subtraction and video inpainting and compared against numerous state-of-the-art methods to demonstrate the robustness of the algorithms. In addition, this thesis proposes a novel Robust lp-norm Singular Value Decomposition (RP-SVD) method for analyzing two-way functional data. The proposed RP-SVD is formulated as an lp-norm based penalized loss minimization problem. The proposed RP-SVD method is evaluated in four applications, i.e. noise and outlier removal, estimation of missing values, structure from motion reconstruction and facial image reconstruction. For deep learning based approaches, this thesis explores the idea of matrix decomposition via Robust Deep Boltzmann Machines (RDBM), an alternative form of Robust Boltzmann Machines, which aiming at dealing with noise and occlusion for face-related applications, particularly. This thesis proposes an extension to texture modeling in the Deep Appearance Models (DAMs) by using RDBM to enhance its robustness against noise and occlusion. The extended model can cope with occlusion and extreme poses when modeling human faces in 2D image reconstruction. This thesis also introduces new fitting algorithms with occlusion awareness through the mask obtained from the RDBM reconstruction. The proposed approach is evaluated in various applications by using challenging face datasets, i.e. Labeled Face Parts in the Wild (LFPW), Helen, EURECOM and AR databases, to demonstrate its robustness and capabilities

    The Shallow and the Deep:A biased introduction to neural networks and old school machine learning

    Get PDF
    The Shallow and the Deep is a collection of lecture notes that offers an accessible introduction to neural networks and machine learning in general. However, it was clear from the beginning that these notes would not be able to cover this rapidly changing and growing field in its entirety. The focus lies on classical machine learning techniques, with a bias towards classification and regression. Other learning paradigms and many recent developments in, for instance, Deep Learning are not addressed or only briefly touched upon.Biehl argues that having a solid knowledge of the foundations of the field is essential, especially for anyone who wants to explore the world of machine learning with an ambition that goes beyond the application of some software package to some data set. Therefore, The Shallow and the Deep places emphasis on fundamental concepts and theoretical background. This also involves delving into the history and pre-history of neural networks, where the foundations for most of the recent developments were laid. These notes aim to demystify machine learning and neural networks without losing the appreciation for their impressive power and versatility

    Biologically inspired evolutionary temporal neural circuits

    Get PDF
    Biological neural networks have always motivated creation of new artificial neural networks, and in this case a new autonomous temporal neural network system. Among the more challenging problems of temporal neural networks are the design and incorporation of short and long-term memories as well as the choice of network topology and training mechanism. In general, delayed copies of network signals can form short-term memory (STM), providing a limited temporal history of events similar to FIR filters, whereas the synaptic connection strengths as well as delayed feedback loops (ER circuits) can constitute longer-term memories (LTM). This dissertation introduces a new general evolutionary temporal neural network framework (GETnet) through automatic design of arbitrary neural networks with STM and LTM. GETnet is a step towards realization of general intelligent systems that need minimum or no human intervention and can be applied to a broad range of problems. GETnet utilizes nonlinear moving average/autoregressive nodes and sub-circuits that are trained by enhanced gradient descent and evolutionary search in terms of architecture, synaptic delay, and synaptic weight spaces. The mixture of Lamarckian and Darwinian evolutionary mechanisms facilitates the Baldwin effect and speeds up the hybrid training. The ability to evolve arbitrary adaptive time-delay connections enables GETnet to find novel answers to many classification and system identification tasks expressed in the general form of desired multidimensional input and output signals. Simulations using Mackey-Glass chaotic time series and fingerprint perspiration-induced temporal variations are given to demonstrate the above stated capabilities of GETnet

    Online Multi-Stage Deep Architectures for Feature Extraction and Object Recognition

    Get PDF
    Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations. Large datasets with high-dimensional features complicate the implementation of visual architectures in memory constrained environments. This dissertation constructs online learning replacements for the components within a multi-stage architecture and demonstrates that the proposed replacements (namely fuzzy competitive clustering, an incremental covariance estimator, and multi-layer neural network) can offer performance competitive with their offline batch counterparts while providing a reduced memory footprint. The online nature of this solution allows for the development of a method for adjusting parameters within the architecture via stochastic gradient descent. Testing over multiple datasets shows the potential benefits of this methodology when appropriate priors on the initial parameters are unknown. Alternatives to batch based decompositions for a whitening preprocessing stage which take advantage of natural image statistics and allow simple dictionary learners to work well in the problem domain are also explored. Expansions of the architecture using additional pooling statistics and multiple layers are presented and indicate that larger codebook sizes are not the only step forward to higher classification accuracies. Experimental results from these expansions further indicate the important role of sparsity and appropriate encodings within multi-stage visual feature extraction architectures

    Role of biases in neural network models

    Get PDF
    corecore