455 research outputs found

    Exploring the potential of using remote sensing data to model agricultural systems in data-limited areas

    Get PDF
    Crop models (CMs) can be a key component in addressing issues of global food security as they can be used to monitor and improve crop production. Regardless of their wide utilization, the employment of these models, particularly in isolated and rural areas, is often limited by the lack of reliable input data. This data scarcity increases uncertainties in model outputs. Nevertheless, some of these uncertainties can be mitigated by integrating remotely sensed data into the CMs. As such, increasing efforts are being made globally to integrate remotely sensed data into CMs to improve their overall performance and use. However, very few such studies have been done in South Africa. Therefore, this research assesses how well a crop model assimilated with remotely sensed data compares with a model calibrated with actual ground data (Maize_control). Ultimately leading to improved local cropping systems knowledge and the capacity to use CMs. As such, the study calibrated the DSSAT-CERES-Maize model using two generic soils (i.e. heavy clay soil and medium sandy soil) which were selected based on literature, to measure soil moisture from 1985 to 2015 in Bloemfontein. Using the data assimilation approach, the model's soil parameters were then adjusted based on remotely sensed soil moisture (SM) observations. The observed improvement was mainly assessed through the lens of SM simulations from the original generic set up to the final remotely sensed informed soil profile set up. The study also gave some measure of comparison with Maize_control and finally explored the impacts of this specific SM improvement on evapotranspiration (ET) and maize yield. The result shows that when compared to the observed data, assimilating remotely sensed data with the model significantly improved the mean simulation of SM while maintaining the representation of its variability. The improved SM, as a result of assimilation of remotely sensed data, closely compares with the Maize_control in terms of mean but there was no improvement in terms of variability. Data assimilation also improved the mean and variability of ET simulation when compared that of Maize_control, but only with heavy clay soil. However, maize yield was not improved in comparison. This confirms that these outputs were influenced by other factors aside from SM or the soil profile parameters. It was concluded that remote sensing data can be used to bias correct model inputs, thus improve certain model outputs

    A Global Systematic Review of Improving Crop Model Estimations by Assimilating Remote Sensing Data: Implications for Small-Scale Agricultural Systems

    Get PDF
    There is a growing effort to use access to remote sensing data (RS) in conjunction with crop model simulation capability to improve the accuracy of crop growth and yield estimates. This is critical for sustainable agricultural management and food security, especially in farming communities with limited resources and data. Therefore, the objective of this study was to provide a systematic review of research on data assimilation and summarize how its application varies by country, crop, and farming systems. In addition, we highlight the implications of using process-based crop models (PBCMs) and data assimilation in small-scale farming systems. Using a strict search term, we searched the Scopus and Web of Science databases and found 497 potential publications. After screening for relevance using predefined inclusion and exclusion criteria, 123 publications were included in the final review. Our results show increasing global interest in RS data assimilation approaches; however, 81% of the studies were from countries with relatively high levels of agricultural production, technology, and innovation. There is increasing development of crop models, availability of RS data sources, and characterization of crop parameters assimilated into PBCMs. Most studies used recalibration or updating methods to mainly incorporate remotely sensed leaf area index from MODIS or Landsat into the WOrld FOod STudies (WOFOST) model to improve yield estimates for staple crops in large-scale and irrigated farming systems. However, these methods cannot compensate for the uncertainties in RS data and crop models. We concluded that further research on data assimilation using newly available high-resolution RS datasets, such as Sentinel-2, should be conducted to significantly improve simulations of rare crops and small-scale rainfed farming systems. This is critical for informing local crop management decisions to improve policy and food security assessments

    Combining Crop Models and Remote Sensing for Yield Prediction: Concepts, Applications and Challenges for Heterogeneous Smallholder Environments

    Get PDF
    JRC and CCAFS jointly organized a workshop on June 13-14, 2012 in Ispra, Italy with the aim to advance the state-of-knowledge of data assimilation for crop yield forecasting in general, to address challenges and needs for successful applications of data assimilation in forecasting crop yields in heterogeneous, smallholder environments, and to enhance collaboration and exchange of knowledge among data assimilation and crop forecasting groups. The workshop showed that advances made in crop science are widely applicable to crop forecasting. The presentations of the participants approached the challenge from many sides, leading to ideas for improvement that can be implemented in real-time, operational crop yield forecasting. When applied, this knowledge has the potential to benefit the livelihoods of smallholder farmers in the developing world.JRC.H.4-Monitoring Agricultural Resource

    Combining Crop Models and Remote Sensing for Yield Prediction: Concepts, Applications and Challenges for Heterogeneous Smallholder Environments

    No full text
    JRC, CCAFS jointly sponsored the workshop on June 13-14, 2012, at the JRC in Ispra, Italy, to identify avenues for exploiting remote sensing information to improving crop forecasting in smallholder farming environments. The workshop’s objectives were: 1) To advance the state-of-knowledge of data assimilation for crop yield forecasting; 2) To address challenges and needs for successful applications of data assimilation in forecasting crop yields in heterogeneous, smallholder environments; and, 3) To enhance collaboration and exchange of knowledge among data assimilation and crop forecasting groups. The workshop succeeded in bringing together scientists from around the world. This has enabled discussions on research and results and has greatly enhanced collaboration and exchange of knowledge, especially about data assimilation and crop forecasting

    Contribution of Remote Sensing on Crop Models: A Review

    Get PDF
    Crop growth models simulate the relationship between plants and the environment to predict the expected yield for applications such as crop management and agronomic decision making, as well as to study the potential impacts of climate change on food security. A major limitation of crop growth models is the lack of spatial information on the actual conditions of each field or region. Remote sensing can provide the missing spatial information required by crop models for improved yield prediction. This paper reviews the most recent information about remote sensing data and their contribution to crop growth models. It reviews the main types, applications, limitations and advantages of remote sensing data and crop models. It examines the main methods by which remote sensing data and crop growth models can be combined. As the spatial resolution of most remote sensing data varies from sub-meter to 1 km, the issue of selecting the appropriate scale is examined in conjunction with their temporal resolution. The expected future trends are discussed, considering the new and planned remote sensing platforms, emergent applications of crop models and their expected improvement to incorporate automatically the increasingly available remotely sensed products

    The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts

    Get PDF
    To effectively meet growing food demands, the global agronomic community will require a better understanding of factors that are currently limiting crop yields and where production can be viably expanded with minimal environmental consequences. Remote sensing can inform these analyses, providing valuable spatiotemporal information about yield-limiting moisture conditions and crop response under current climate conditions. In this paper we study correlations for the period 2003-2013 between yield estimates for major crops grown in Brazil and the Evaporative Stress Index (ESI) - an indicator of agricultural drought that describes anomalies in the actual/reference evapotranspiration (ET) ratio, retrieved using remotely sensed inputs of land surface temperature (LST) and leaf area index (LAI). The strength and timing of peak ESI-yield correlations are compared with results using remotely sensed anomalies in water supply (rainfall from the Tropical Rainfall Mapping Mission; TRMM) and biomass accumulation (LAI from the Moderate Resolution Imaging Spectroradiometer; MODIS). Correlation patterns were generally similar between all indices, both spatially and temporally, with the strongest correlations found in the south and northeast where severe flash droughts have occurred over the past decade, and where yield variability was the highest. Peak correlations tended to occur during sensitive crop growth stages. At the state scale, the ESI provided higher yield correlations for most crops and regions in comparison with TRMM and LAI anomalies. Using finer scale yield estimates reported at the municipality level, ESI correlations with soybean yields peaked higher and earlier by 10 to 25 days in comparison to TRMM and LAI, respectively. In most states, TRMM peak correlations were marginally higher on average with municipality-level annual corn yield estimates, although these estimates do not distinguish between primary and late season harvests. A notable exception occurred in the northeastern state of Bahia, where the ESI better captured effects of rapid cycling of moisture conditions on corn yields during a series of flash drought events. The results demonstrate that for monitoring agricultural drought in Brazil, value is added by combining LAI with LST indicators within a physically based model of crop water use. Published by Elsevier Inc.Embrapa Visiting Scientist Program ; Labex US, an international scientific cooperation program - Brazilian Agricultural Research Corporation - Embrapa, ; United States Department of Agriculture (USDA

    Assimilation de données satellitaires pour le suivi des ressources en eau dans la zone Euro-Méditerranée

    Get PDF
    Une estimation plus précise de l'état des variables des surfaces terrestres est requise afin d'améliorer notre capacité à comprendre, suivre et prévoir le cycle hydrologique terrestre dans diverses régions du monde. En particulier, les zones méditerranéennes sont souvent caractérisées par un déficit en eau du sol affectant la croissance de la végétation. Les dernières simulations du GIEC (Groupe d'Experts Intergouvernemental sur l'Evolution du Climat) indiquent qu'une augmentation de la fréquence des sécheresses et des vagues de chaleur dans la région Euro-Méditerranée est probable. Il est donc crucial d'améliorer les outils et l'utilisation des observations permettant de caractériser la dynamique des processus des surfaces terrestres de cette région. Les modèles des surfaces terrestres ou LSMs (Land Surface Models) ont été développés dans le but de représenter ces processus à diverses échelles spatiales. Ils sont habituellement forçés par des données horaires de variables atmosphériques en point de grille, telles que la température et l'humidité de l'air, le rayonnement solaire et les précipitations. Alors que les LSMs sont des outils efficaces pour suivre de façon continue les conditions de surface, ils présentent encore des défauts provoqués par les erreurs dans les données de forçages, dans les valeurs des paramètres du modèle, par l'absence de représentation de certains processus, et par la mauvaise représentation des processus dans certaines régions et certaines saisons. Il est aussi possible de suivre les conditions de surface depuis l'espace et la modélisation des variables des surfaces terrestres peut être améliorée grâce à l'intégration dynamique de ces observations dans les LSMs. La télédétection spatiale micro-ondes à basse fréquence est particulièrement utile dans le contexte du suivi de ces variables à l'échelle globale ou continentale. Elle a l'avantage de pouvoir fournir des observations par tout-temps, de jour comme de nuit. Plusieurs produits utiles pour le suivi de la végétation et du cycle hydrologique sont déjà disponibles. Ils sont issus de radars en bande C tels que ASCAT (Advanced Scatterometer) ou Sentinel-1. L'assimilation de ces données dans un LSM permet leur intégration de façon cohérente avec la représentation des processus. Les résultats obtenus à partir de l'intégration de données satellitaires fournissent une estimation de l'état des variables des surfaces terrestres qui sont généralement de meilleure qualité que les simulations sans assimilation de données et que les données satellitaires elles-mêmes. L'objectif principal de ce travail de thèse a été d'améliorer la représentation des variables des surfaces terrestres reliées aux cycles de l'eau et du carbone dans le modèle ISBA grâce à l'assimilation d'observations de rétrodiffusion radar (sigma°) provenant de l'instrument ASCAT. Un opérateur d'observation capable de représenter les sigma° ASCAT à partir de variables simulées par le modèle ISBA a été développé. Une version du WCM (water cloud model) a été mise en œuvre avec succès sur la zone Euro-Méditerranée. Les valeurs simulées ont été comparées avec les observations satellitaires. Une quantification plus détaillée de l'impact de divers facteurs sur le signal a été faite sur le sud-ouest de la France. L'étude de l'impact de la tempête Klaus sur la forêt des Landes a montré que le WCM est capable de représenter un changement brutal de biomasse de la végétation. Le WCM est peu efficace sur les zones karstiques et sur les surfaces agricoles produisant du blé. Dans ce dernier cas, le problème semble provenir d'un décalage temporel entre l'épaisseur optique micro-ondes de la végétation et l'indice de surface foliaire de la végétation. Enfin, l'assimilation directe des sigma° ASCAT a été évaluée sur le sud-ouest de la France.More accurate estimates of land surface conditions are important for enhancing our ability to understand, monitor, and predict key variables of the terrestrial water cycle in various parts of the globe. In particular, the Mediterranean area is frequently characterized by a marked impact of the soil water deficit on vegetation growth. The latest IPCC (Intergovernmental Panel on Climate Change) simulations indicate that occurrence of droughts and warm spells in the Euro-Mediterranean region are likely to increase. It is therefore crucial to improve the ways of understanding, observing and simulating the dynamics of the land surface processes in the Euro-Mediterranean region. Land surface models (LSMs) have been developed for the purpose of representing the land surface processes at various spatial scales. They are usually forced by hourly gridded atmospheric variables such as air temperature, air humidity, solar radiation, precipitation, and are used to simulate land surface states and fluxes. While LSMs can provide a continuous monitoring of land surface conditions, they still show discrepancies due to forcing and parameter errors, missing processes and inadequate model physics for particular areas or seasons. It is also possible to observe the land surface conditions from space. The modelling of land surface variables can be improved through the dynamical integration of these observations into LSMs. Remote sensing observations are particularly useful in this context because they are able to address global and continental scales. Low frequency microwave remote sensing has advantages because it can provide regular observations in all-weather conditions and at either daytime or night-time. A number of satellite-derived products relevant to the hydrological and vegetation cycles are already available from C-band radars such as the Advanced Scatterometer (ASCAT) or Sentinel-1. Assimilating these data into LSMs permits their integration in the process representation in a consistent way. The results obtained from assimilating satellites products provide land surface variables estimates that are generally superior to the model estimates or satellite observations alone. The main objective of this thesis was to improve the representation of land surface variables linked to the terrestrial water and carbon cycles in the ISBA LSM through the assimilation of ASCAT backscatter (sigma°) observations. An observation operator capable of representing the ASCAT sigma° from the ISBA simulated variables was developed. A version of the water cloud model (WCM) was successfully implemented over the Euro-Mediterranean area. The simulated values were compared with those observed from space. A more detailed quantification of the influence of various factors on the signal was made over southwestern France. Focusing on the Klaus storm event in the Landes forest, it was shown that the WCM was able to represent abrupt changes in vegetation biomass. It was also found that the WCM had shortcomings over karstic areas and over wheat croplands. It was shown that the latter was related to a discrepancy between the seasonal cycle of microwave vegetation optical depth (VOD) and leaf area index (LAI). Finally, the direct assimilation of ASCAT sigma° observations was assessed over southwestern France
    corecore