17,748 research outputs found

    Learning to Recommend with Multiple Cascading Behaviors

    Full text link
    Most existing recommender systems leverage user behavior data of one type only, such as the purchase behavior in E-commerce that is directly related to the business KPI (Key Performance Indicator) of conversion rate. Besides the key behavioral data, we argue that other forms of user behaviors also provide valuable signal, such as views, clicks, adding a product to shop carts and so on. They should be taken into account properly to provide quality recommendation for users. In this work, we contribute a new solution named NMTR (short for Neural Multi-Task Recommendation) for learning recommender systems from user multi-behavior data. We develop a neural network model to capture the complicated and multi-type interactions between users and items. In particular, our model accounts for the cascading relationship among different types of behaviors (e.g., a user must click on a product before purchasing it). To fully exploit the signal in the data of multiple types of behaviors, we perform a joint optimization based on the multi-task learning framework, where the optimization on a behavior is treated as a task. Extensive experiments on two real-world datasets demonstrate that NMTR significantly outperforms state-of-the-art recommender systems that are designed to learn from both single-behavior data and multi-behavior data. Further analysis shows that modeling multiple behaviors is particularly useful for providing recommendation for sparse users that have very few interactions.Comment: Published in IEEE Transactions on Knowledge and Data Engineering (TKDE

    Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text

    Full text link
    Collaborative filtering (CF) is the key technique for recommender systems (RSs). CF exploits user-item behavior interactions (e.g., clicks) only and hence suffers from the data sparsity issue. One research thread is to integrate auxiliary information such as product reviews and news titles, leading to hybrid filtering methods. Another thread is to transfer knowledge from other source domains such as improving the movie recommendation with the knowledge from the book domain, leading to transfer learning methods. In real-world life, no single service can satisfy a user's all information needs. Thus it motivates us to exploit both auxiliary and source information for RSs in this paper. We propose a novel neural model to smoothly enable Transfer Meeting Hybrid (TMH) methods for cross-domain recommendation with unstructured text in an end-to-end manner. TMH attentively extracts useful content from unstructured text via a memory module and selectively transfers knowledge from a source domain via a transfer network. On two real-world datasets, TMH shows better performance in terms of three ranking metrics by comparing with various baselines. We conduct thorough analyses to understand how the text content and transferred knowledge help the proposed model.Comment: 11 pages, 7 figures, a full version for the WWW 2019 short pape

    Joint Training Capsule Network for Cold Start Recommendation

    Full text link
    This paper proposes a novel neural network, joint training capsule network (JTCN), for the cold start recommendation task. We propose to mimic the high-level user preference other than the raw interaction history based on the side information for the fresh users. Specifically, an attentive capsule layer is proposed to aggregate high-level user preference from the low-level interaction history via a dynamic routing-by-agreement mechanism. Moreover, JTCN jointly trains the loss for mimicking the user preference and the softmax loss for the recommendation together in an end-to-end manner. Experiments on two publicly available datasets demonstrate the effectiveness of the proposed model. JTCN improves other state-of-the-art methods at least 7.07% for CiteULike and 16.85% for Amazon in terms of Recall@100 in cold start recommendation.Comment: Accepted by SIGIR'2

    Exploring Student Check-In Behavior for Improved Point-of-Interest Prediction

    Full text link
    With the availability of vast amounts of user visitation history on location-based social networks (LBSN), the problem of Point-of-Interest (POI) prediction has been extensively studied. However, much of the research has been conducted solely on voluntary checkin datasets collected from social apps such as Foursquare or Yelp. While these data contain rich information about recreational activities (e.g., restaurants, nightlife, and entertainment), information about more prosaic aspects of people's lives is sparse. This not only limits our understanding of users' daily routines, but more importantly the modeling assumptions developed based on characteristics of recreation-based data may not be suitable for richer check-in data. In this work, we present an analysis of education "check-in" data using WiFi access logs collected at Purdue University. We propose a heterogeneous graph-based method to encode the correlations between users, POIs, and activities, and then jointly learn embeddings for the vertices. We evaluate our method compared to previous state-of-the-art POI prediction methods, and show that the assumptions made by previous methods significantly degrade performance on our data with dense(r) activity signals. We also show how our learned embeddings could be used to identify similar students (e.g., for friend suggestions).Comment: published in KDD'1

    Yum-me: A Personalized Nutrient-based Meal Recommender System

    Full text link
    Nutrient-based meal recommendations have the potential to help individuals prevent or manage conditions such as diabetes and obesity. However, learning people's food preferences and making recommendations that simultaneously appeal to their palate and satisfy nutritional expectations are challenging. Existing approaches either only learn high-level preferences or require a prolonged learning period. We propose Yum-me, a personalized nutrient-based meal recommender system designed to meet individuals' nutritional expectations, dietary restrictions, and fine-grained food preferences. Yum-me enables a simple and accurate food preference profiling procedure via a visual quiz-based user interface, and projects the learned profile into the domain of nutritionally appropriate food options to find ones that will appeal to the user. We present the design and implementation of Yum-me, and further describe and evaluate two innovative contributions. The first contriution is an open source state-of-the-art food image analysis model, named FoodDist. We demonstrate FoodDist's superior performance through careful benchmarking and discuss its applicability across a wide array of dietary applications. The second contribution is a novel online learning framework that learns food preference from item-wise and pairwise image comparisons. We evaluate the framework in a field study of 227 anonymous users and demonstrate that it outperforms other baselines by a significant margin. We further conducted an end-to-end validation of the feasibility and effectiveness of Yum-me through a 60-person user study, in which Yum-me improves the recommendation acceptance rate by 42.63%

    Deep Interest Network for Click-Through Rate Prediction

    Full text link
    Click-through rate prediction is an essential task in industrial applications, such as online advertising. Recently deep learning based models have been proposed, which follow a similar Embedding\&MLP paradigm. In these methods large scale sparse input features are first mapped into low dimensional embedding vectors, and then transformed into fixed-length vectors in a group-wise manner, finally concatenated together to fed into a multilayer perceptron (MLP) to learn the nonlinear relations among features. In this way, user features are compressed into a fixed-length representation vector, in regardless of what candidate ads are. The use of fixed-length vector will be a bottleneck, which brings difficulty for Embedding\&MLP methods to capture user's diverse interests effectively from rich historical behaviors. In this paper, we propose a novel model: Deep Interest Network (DIN) which tackles this challenge by designing a local activation unit to adaptively learn the representation of user interests from historical behaviors with respect to a certain ad. This representation vector varies over different ads, improving the expressive ability of model greatly. Besides, we develop two techniques: mini-batch aware regularization and data adaptive activation function which can help training industrial deep networks with hundreds of millions of parameters. Experiments on two public datasets as well as an Alibaba real production dataset with over 2 billion samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with state-of-the-art methods. DIN now has been successfully deployed in the online display advertising system in Alibaba, serving the main traffic.Comment: Accepted by KDD 201

    Try This Instead: Personalized and Interpretable Substitute Recommendation

    Full text link
    As a fundamental yet significant process in personalized recommendation, candidate generation and suggestion effectively help users spot the most suitable items for them. Consequently, identifying substitutable items that are interchangeable opens up new opportunities to refine the quality of generated candidates. When a user is browsing a specific type of product (e.g., a laptop) to buy, the accurate recommendation of substitutes (e.g., better equipped laptops) can offer the user more suitable options to choose from, thus substantially increasing the chance of a successful purchase. However, existing methods merely treat this problem as mining pairwise item relationships without the consideration of users' personal preferences. Moreover, the substitutable relationships are implicitly identified through the learned latent representations of items, leading to uninterpretable recommendation results. In this paper, we propose attribute-aware collaborative filtering (A2CF) to perform substitute recommendation by addressing issues from both personalization and interpretability perspectives. Instead of directly modelling user-item interactions, we extract explicit and polarized item attributes from user reviews with sentiment analysis, whereafter the representations of attributes, users, and items are simultaneously learned. Then, by treating attributes as the bridge between users and items, we can thoroughly model the user-item preferences (i.e., personalization) and item-item relationships (i.e., substitution) for recommendation. In addition, A2CF is capable of generating intuitive interpretations by analyzing which attributes a user currently cares the most and comparing the recommended substitutes with her/his currently browsed items at an attribute level. The recommendation effectiveness and interpretation quality of A2CF are demonstrated via extensive experiments on three real datasets.Comment: To appear in SIGIR'2

    Neural Graph Collaborative Filtering

    Full text link
    Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions -- more specifically the bipartite graph structure -- into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/xiangwang1223/neural_graph_collaborative_filtering.Comment: SIGIR 2019; the latest version of NGCF paper, which is distinct from the version published in ACM Digital Librar

    TribeFlow: Mining & Predicting User Trajectories

    Full text link
    Which song will Smith listen to next? Which restaurant will Alice go to tomorrow? Which product will John click next? These applications have in common the prediction of user trajectories that are in a constant state of flux over a hidden network (e.g. website links, geographic location). What users are doing now may be unrelated to what they will be doing in an hour from now. Mindful of these challenges we propose TribeFlow, a method designed to cope with the complex challenges of learning personalized predictive models of non-stationary, transient, and time-heterogeneous user trajectories. TribeFlow is a general method that can perform next product recommendation, next song recommendation, next location prediction, and general arbitrary-length user trajectory prediction without domain-specific knowledge. TribeFlow is more accurate and up to 413x faster than top competitors.Comment: To Appear at WWW 201

    News Session-Based Recommendations using Deep Neural Networks

    Full text link
    News recommender systems are aimed to personalize users experiences and help them to discover relevant articles from a large and dynamic search space. Therefore, news domain is a challenging scenario for recommendations, due to its sparse user profiling, fast growing number of items, accelerated item's value decay, and users preferences dynamic shift. Some promising results have been recently achieved by the usage of Deep Learning techniques on Recommender Systems, specially for item's feature extraction and for session-based recommendations with Recurrent Neural Networks. In this paper, it is proposed an instantiation of the CHAMELEON -- a Deep Learning Meta-Architecture for News Recommender Systems. This architecture is composed of two modules, the first responsible to learn news articles representations, based on their text and metadata, and the second module aimed to provide session-based recommendations using Recurrent Neural Networks. The recommendation task addressed in this work is next-item prediction for users sessions: "what is the next most likely article a user might read in a session?" Users sessions context is leveraged by the architecture to provide additional information in such extreme cold-start scenario of news recommendation. Users' behavior and item features are both merged in an hybrid recommendation approach. A temporal offline evaluation method is also proposed as a complementary contribution, for a more realistic evaluation of such task, considering dynamic factors that affect global readership interests like popularity, recency, and seasonality. Experiments with an extensive number of session-based recommendation methods were performed and the proposed instantiation of CHAMELEON meta-architecture obtained a significant relative improvement in top-n accuracy and ranking metrics (10% on Hit Rate and 13% on MRR) over the best benchmark methods.Comment: Accepted for the Third Workshop on Deep Learning for Recommender Systems - DLRS 2018, October 02-07, 2018, Vancouver, Canada. https://recsys.acm.org/recsys18/dlrs
    corecore