32,387 research outputs found

    Improving human-robot-interaction utilizing learning and intelligence: a human factors-based approach

    Get PDF
    Several decades of development in the fields of robotics and automation have resulted in human-robot interaction is commonplace, and the subject of intense study. These interactions are particularly prevalent in manufacturing, where human operators (HOs) have been employed in numerous robotics and automation tasks. The presence of HOs continues to be a source of uncertainty in such systems, despite the study of human factors, in an attempt to better understand these variations in performance. Concurrent developments in intelligent manufacturing present opportunities for adaptability within robotic control. This article examines relevant human factors and develops a framework for integrating the necessary elements of intelligent control and data processing to provide appropriate adaptability to robotic elements, consequently improving collaborative interaction with human colleagues. A neural network-based learning approach is used to predict the influence on human task performance and use these predictions to make informed changes to programed behavior, and a methodology developed to explore the application of learning techniques to this area further. This article is supported by an example case study, in which a simulation model is used to explore the application of the developed system, and its performance in a real-world production scenario. The simulation results reveal that adaptability can be realized with some relatively simple techniques and models if applied in the right manner and that such adaptability is helpful to tackle the issue of performance disparity in manufacturing operations

    Resilience Assignment Framework using System Dynamics and Fuzzy Logic.

    Get PDF
    This paper is concerned with the development of a conceptual framework that measures the resilience of the transport network under climate change related events. However, the conceptual framework could be adapted and quantified to suit each disruption’s unique impacts. The proposed resilience framework evaluates the changes in transport network performance in multi-stage processes; pre, during and after the disruption. The framework will be of use to decision makers in understanding the dynamic nature of resilience under various events. Furthermore, it could be used as an evaluation tool to gauge transport network performance and highlight weaknesses in the network. In this paper, the system dynamics approach and fuzzy logic theory are integrated and employed to study three characteristics of network resilience. The proposed methodology has been selected to overcome two dominant problems in transport modelling, namely complexity and uncertainty. The system dynamics approach is intended to overcome the double counting effect of extreme events on various resilience characteristics because of its ability to model the feedback process and time delay. On the other hand, fuzzy logic is used to model the relationships among different variables that are difficult to express in numerical form such as redundancy and mobility

    From supply chains to demand networks. Agents in retailing: the electrical bazaar

    Get PDF
    A paradigm shift is taking place in logistics. The focus is changing from operational effectiveness to adaptation. Supply Chains will develop into networks that will adapt to consumer demand in almost real time. Time to market, capacity of adaptation and enrichment of customer experience seem to be the key elements of this new paradigm. In this environment emerging technologies like RFID (Radio Frequency ID), Intelligent Products and the Internet, are triggering a reconsideration of methods, procedures and goals. We present a Multiagent System framework specialized in retail that addresses these changes with the use of rational agents and takes advantages of the new market opportunities. Like in an old bazaar, agents able to learn, cooperate, take advantage of gossip and distinguish between collaborators and competitors, have the ability to adapt, learn and react to a changing environment better than any other structure. Keywords: Supply Chains, Distributed Artificial Intelligence, Multiagent System.Postprint (published version

    Resilience in rural common-pool resource management systems: towards enhancing landscape amenities using a multi-agent approach

    Get PDF
    Rural areas are continuously subject to changing circumstances, varying from changes in ecosystem conditions to socio-economic changes like food- and financial crises. Within Europe, the Common Agricultural Policy (CAP) reform is driver as well for change of rural common pool resources (CPR). Rural CPRs are defined as rural social-ecological systems which provide landscapes with high agricultural, ecological and cultural-historical values. The conservation of these systems is treated as the enhancement of these values through the protection of rare plant species. Analyzing resilience of rural CPRs offers a framework to emphasize dynamics and interdependencies across time, space and between social, economic and ecological domains. This paper provides insight into the effects of CAP reforms on rural CPRs and its resilience, through the use of a multi-agent simulation approach. The advantage of such a multi-agent approach is that it allows to capture interactions of heterogeneous agents in a landscape that provides space for both agriculture and rare plant species. The simulation model is applied for Winterswijk, which is a rural region in eastern part of the Netherlands. This CPR is characterized by a small scale landscape with high biodiversity. Transferring insights from resilience thinking to rural development strategies would lead to a focus on the factors that build the ability of the rural area to respond to policy changes. The strength of multi-agent models is illustrated and their potential for the analysis of different policy options and implications in rural areas is shown

    Quality measures for ETL processes: from goals to implementation

    Get PDF
    Extraction transformation loading (ETL) processes play an increasingly important role for the support of modern business operations. These business processes are centred around artifacts with high variability and diverse lifecycles, which correspond to key business entities. The apparent complexity of these activities has been examined through the prism of business process management, mainly focusing on functional requirements and performance optimization. However, the quality dimension has not yet been thoroughly investigated, and there is a need for a more human-centric approach to bring them closer to business-users requirements. In this paper, we take a first step towards this direction by defining a sound model for ETL process quality characteristics and quantitative measures for each characteristic, based on existing literature. Our model shows dependencies among quality characteristics and can provide the basis for subsequent analysis using goal modeling techniques. We showcase the use of goal modeling for ETL process design through a use case, where we employ the use of a goal model that includes quantitative components (i.e., indicators) for evaluation and analysis of alternative design decisions.Peer ReviewedPostprint (author's final draft

    Food supply chain network robustness : a literature review and research agenda

    Get PDF
    Today’s business environment is characterized by challenges of strong global competition where companies tend to achieve leanness and maximum responsiveness. However, lean supply chain networks (SCNs) become more vulnerable to all kind of disruptions. Food SCNs have to become robust, i.e. they should be able to continue to function in the event of disruption as well as in normal business environment. Current literature provides no explicit clarification related to robustness issue in food SCN context. This paper explores the meaning of SCN robustness and highlights further research direction
    corecore