2,190 research outputs found

    Tabu Search: A Comparative Study

    Get PDF

    Investigating Constraint Programming and Hybrid Methods for Real World Industrial Test Laboratory Scheduling

    Full text link
    In this paper we deal with a complex real world scheduling problem closely related to the well-known Resource-Constrained Project Scheduling Problem (RCPSP). The problem concerns industrial test laboratories in which a large number of tests has to be performed by qualified personnel using specialised equipment, while respecting deadlines and other constraints. We present different constraint programming models and search strategies for this problem. Furthermore, we propose a Very Large Neighborhood Search approach based on our CP methods. Our models are evaluated using CP solvers and a MIP solver both on real-world test laboratory data and on a set of generated instances of different sizes based on the real-world data. Further, we compare the exact approaches with VLNS and a Simulated Annealing heuristic. We could find feasible solutions for all instances and several optimal solutions and we show that using VLNS we can improve upon the results of the other approaches

    Solving Challenging Real-World Scheduling Problems

    Get PDF
    This work contains a series of studies on the optimization of three real-world scheduling problems, school timetabling, sports scheduling and staff scheduling. These challenging problems are solved to customer satisfaction using the proposed PEAST algorithm. The customer satisfaction refers to the fact that implementations of the algorithm are in industry use. The PEAST algorithm is a product of long-term research and development. The first version of it was introduced in 1998. This thesis is a result of a five-year development of the algorithm. One of the most valuable characteristics of the algorithm has proven to be the ability to solve a wide range of scheduling problems. It is likely that it can be tuned to tackle also a range of other combinatorial problems. The algorithm uses features from numerous different metaheuristics which is the main reason for its success. In addition, the implementation of the algorithm is fast enough for real-world use.Siirretty Doriast
    • …
    corecore