18,180 research outputs found

    Learning the structure of Bayesian Networks: A quantitative assessment of the effect of different algorithmic schemes

    Full text link
    One of the most challenging tasks when adopting Bayesian Networks (BNs) is the one of learning their structure from data. This task is complicated by the huge search space of possible solutions, and by the fact that the problem is NP-hard. Hence, full enumeration of all the possible solutions is not always feasible and approximations are often required. However, to the best of our knowledge, a quantitative analysis of the performance and characteristics of the different heuristics to solve this problem has never been done before. For this reason, in this work, we provide a detailed comparison of many different state-of-the-arts methods for structural learning on simulated data considering both BNs with discrete and continuous variables, and with different rates of noise in the data. In particular, we investigate the performance of different widespread scores and algorithmic approaches proposed for the inference and the statistical pitfalls within them

    Two Optimal Strategies for Active Learning of Causal Models from Interventional Data

    Full text link
    From observational data alone, a causal DAG is only identifiable up to Markov equivalence. Interventional data generally improves identifiability; however, the gain of an intervention strongly depends on the intervention target, that is, the intervened variables. We present active learning (that is, optimal experimental design) strategies calculating optimal interventions for two different learning goals. The first one is a greedy approach using single-vertex interventions that maximizes the number of edges that can be oriented after each intervention. The second one yields in polynomial time a minimum set of targets of arbitrary size that guarantees full identifiability. This second approach proves a conjecture of Eberhardt (2008) indicating the number of unbounded intervention targets which is sufficient and in the worst case necessary for full identifiability. In a simulation study, we compare our two active learning approaches to random interventions and an existing approach, and analyze the influence of estimation errors on the overall performance of active learning

    Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?

    Get PDF
    In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchment
    • …
    corecore