380 research outputs found

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    Smart Object Reminders with RFID and Mobile Technologies

    Get PDF
    [[abstract]]In this paper, we present a reminder system that sends a reminder list to the user's mobile device based on the history data collected from the same user and the events in the user's calendar on that day. The system provides an individualized service. The list is to remind the user with objects he/she might have forgotten at home. The objects that the user brings along with are detected by passive RFID technology. Objects are classified into three different levels based on their frequencies in the history data. Rules of the three levels are then followed to decide if a certain object should be in the reminder list or not. A feedback mechanism is also designed to lower the possibility of unnecessary reminding.[[incitationindex]]SCI[[booktype]]電子

    Ultra high frequency (UHF) radio-frequency identification (RFID) for robot perception and mobile manipulation

    Get PDF
    Personal robots with autonomy, mobility, and manipulation capabilities have the potential to dramatically improve quality of life for various user populations, such as older adults and individuals with motor impairments. Unfortunately, unstructured environments present many challenges that hinder robot deployment in ordinary homes. This thesis seeks to address some of these challenges through a new robotic sensing modality that leverages a small amount of environmental augmentation in the form of Ultra High Frequency (UHF) Radio-Frequency Identification (RFID) tags. Previous research has demonstrated the utility of infrastructure tags (affixed to walls) for robot localization; in this thesis, we specifically focus on tagging objects. Owing to their low-cost and passive (battery-free) operation, users can apply UHF RFID tags to hundreds of objects throughout their homes. The tags provide two valuable properties for robots: a unique identifier and receive signal strength indicator (RSSI, the strength of a tag's response). This thesis explores robot behaviors and radio frequency perception techniques using robot-mounted UHF RFID readers that enable a robot to efficiently discover, locate, and interact with UHF RFID tags applied to objects and people of interest. The behaviors and algorithms explicitly rely on the robot's mobility and manipulation capabilities to provide multiple opportunistic views of the complex electromagnetic landscape inside a home environment. The electromagnetic properties of RFID tags change when applied to common household objects. Objects can have varied material properties, can be placed in diverse orientations, and be relocated to completely new environments. We present a new class of optimization-based techniques for RFID sensing that are robust to the variation in tag performance caused by these complexities. We discuss a hybrid global-local search algorithm where a robot employing long-range directional antennas searches for tagged objects by maximizing expected RSSI measurements; that is, the robot attempts to position itself (1) near a desired tagged object and (2) oriented towards it. The robot first performs a sparse, global RFID search to locate a pose in the neighborhood of the tagged object, followed by a series of local search behaviors (bearing estimation and RFID servoing) to refine the robot's state within the local basin of attraction. We report on RFID search experiments performed in Georgia Tech's Aware Home (a real home). Our optimization-based approach yields superior performance compared to state of the art tag localization algorithms, does not require RF sensor models, is easy to implement, and generalizes to other short-range RFID sensor systems embedded in a robot's end effector. We demonstrate proof of concept applications, such as medication delivery and multi-sensor fusion, using these techniques. Through our experimental results, we show that UHF RFID is a complementary sensing modality that can assist robots in unstructured human environments.PhDCommittee Chair: Kemp, Charles C.; Committee Member: Abowd, Gregory; Committee Member: Howard, Ayanna; Committee Member: Ingram, Mary Ann; Committee Member: Reynolds, Matt; Committee Member: Tentzeris, Emmanoui

    Towards realisation of spectrum sharing of cognitive radio networks

    Get PDF
    Cognitive radio networks (CRN) have emerged as a promising solution to spectrum shortcoming, thanks to Professor Mitola who coined Cognitive Radios. To enable efficient communications, CRNs need to avoid interference to both Primary (licensee) Users (PUs), and among themselves (called self-coexistence). In this thesis, we focus on self-coexistence issues. Very briefly, the problems are categorised into intentional and unintentional interference. Firstly, unintentional interference includes: 1) CRNs administration; 2) Overcrowded CRNs Situation; 3) Missed spectrum detection; 4) Inter-cell Interference (ICI); and 5) Inability to model Secondary Users’ (SUs) activity. In intentional interference there is Primary User Emulation Attack (PUEA). To administer CRN operations (Prob. 1), in our first contribution, we proposed CogMnet, which aims to manage the spectrum sharing of centralised networks. CogMnet divides the country into locations. It then dedicates a real-time database for each location to record CRNs’ utilisations in real time, where each database includes three storage units: Networks locations storage unit; Real-time storage unit; and Historical storage unit. To tackle Prob. 2, our second contribution is CRNAC, a network admission control algorithm that aims to calculate the maximum number of CRNs allowed in any location. CRNAC has been tested and evaluated using MATLAB. To prevent research problems 3, 4, and to tackle research problem (5), our third contribution is RCNC, a new design for an infrastructure-based CRN core. The architecture of RCNC consists of two engines: Monitor and Coordinator Engine (MNCE) and Modified Cognitive Engine (MCE). Comprehensive simulation scenarios using ICS Designer (by ATDI) have validated some of RCNC’s components. In the last contribution, to deter PUEA (the intentional interference type), we developed a PUEA Deterrent (PUED) algorithm capable of detecting PUEAs commission details. PUED must be implemented by a PUEA Identifier Component in the MNCE in RCNC after every spectrum handing off. Therefore, PUED works like a CCTV system. According to criminology, robust CCTV systems have shown a significant prevention of clear visible theft, reducing crime rates by 80%. Therefore, we believe that our algorithm will do the same. Extensive simulations using a Vienna simulator showed the effectiveness of the PUED algorithm in terms of improving CRNs’ performance

    Dynamic frequency planning for professional wireless microphone systems

    Get PDF
    [no abstract

    Smart Object Reminders with RFID and Mobile Technologies

    Get PDF

    Reliable Cognitive Ultra Wideband Communication Systems Under Coexistence Constraints

    Get PDF
    RÉSUMÉ La croissance rapide des systèmes de communication sans fil et la rareté du spectre ont motivé les industries et les fournisseurs ouvrant dans le domaine de communication sans fil de développer des stratégies et des technologies de communication qui peuvent utiliser efficacement les ressources spectrales. La réutilisation pacifique du spectre sous-licence et sous-utilisé peut être une solution prometteuse pour certaines initiatives en cours telles que la communication mobile à haut débit, la communication machine-à-machine, et la connectivité WiFi. Un des plus gros facteurs qui empêche l'approche de cette réutilisation de fréquences est l'effet d'environnements bruyants sur les dispositifs coexistent dans la même bande de fréquence. Par conséquent, la demande pour une stratégie de coexistence pacifique entre les utilisateurs du spectre, des défis et des questions techniques qu'elle engêndre, motive notre recherche. Il est à noter que dans cette thèse, nous considérons un système pratique appelé MB-OFDM UWB (en anglais multiband orthogonal frequency division multiplexing ultra wideband) pour donner un aperçu pratique de ce concept. Pour atteindre cet objectif, d'abord nous examinons le problème d'interférence des utilisateurs secondaires sur les utilisateurs principaux. A cet effet, tenant compte d'un système secondaire OFDM, nous proposons des méthodes de mise en forme du spectre pour les applications de transmission à antennes simples et multiples. Nous présentons une technique débit-efficace nommée “Enhanced active interference cancellation (E - AIC)qui est en effet capable de créer des encoches ayant des caractéristiques flexibles. Afin de résoudre le problème de dépassement du spectre causé pas la technique classique-AIC, nous utilisons une approche multi-contraintes qui à son tour cause un problème multi-contrainte de minimisation (en anglais multi-constraint minimization problem, MCMP). Cependant, un nouvel algorithme itératif basé sur la technique SVD (en anglais singular value decomposition) est proposé, permettant ainsi de réduire la complexité de la solution de MCMP. Les résultats de simulation obtenus montrent que la technique E-AIC proposée fournit de meilleures performances en termes de suppression des lobes latéraux avec 0 dB de dépassement, moins de complexité de calcul et moins de perte de débit par rapport aux méthodes AIC précédentes. Quant aux antennes multiples, nous proposons deux nouvelles techniques AIC, qui utilisent l'idée principale des approches de sélection d'antennes d'émission (en anglais transmit antenna selection, TAS). Bien que les résultats montrent que les deux techniques permettent la création d'encoche identique, la technique per-tone TAS-AIC a la plus grande efficacité spectrale. Après avoir obtenu une emission sans interférence pour le système MB-OFDM UWB, nous analysons, modélisons et atténuons le bruit impulsif au récepteur MB-OFDM UWB. Pour ce faire, d'abord, nous proposons un cadre analytique qui décrit les principales caractéristiques d'interférence d'un système à ultra large bande et saut temporel (en anglais time-hopping UWB, TH-UWB) niveau de ces paramètres de signalisation. Les résultats montrent que la distribution d'interférence dépend fortement aux paramètres de saut temporel du système TH-UWB.----------ABSTRACT The rapid growth of wireless communication systems along with the radio spectrum's scarcity and regulatory considerations have put the onus on the wireless industries and service providers to develop wireless communication strategies and technologies that can efficiently utilize the spectral resources. Hence, peaceful reuse of underutilized licensed radio frequencies (by secondary users) can be a promising solution for some ongoing initiatives such as mobile broadband, machine-to-machine applications and WiFi connectivity. One of the biggest factors that prevents the spectrum reusing approach to effectively address the spectrum scarcity, is noisy environments result from coexistence of different devices in the same frequency band. Therefore, the request for a peaceful coexistence strategy between spectrum users, which leads to various challenges, and technical issues, motivates our research. It is worth noting that, in this thesis, we consider a practical system called multiband orthogonal frequency division multiplexing ultra wideband (MB-OFDM UWB) as an underlay system to provide a practical insight into this concept. However, all the obtained results and contributions are applicable to other OFDM-based communication systems. Towards this goal, we first investigate the problem of the interference from secondary users to the primary users. For this purpose, considering an OFDM-based secondary communication system, we propose spectrum-shaping methods for single and multiple transmit antennas applications. For single antenna scenario, we present a throughput-efficient enhanced active interference cancellation (E-AIC) technique, which is indeed capable of creating notches with flexible characteristics. In order to address the spectrum overshoot problem of conventional-AIC techniques, we employed a multi-constraint approach, which leads to a multi-constraint minimization problem (MCMP). Hence, a novel iterative singular value decomposition (SVD) based algorithm is proposed to reduce the complexity of the MCMP's solution. The obtained simulation results show that the proposed enhanced-AIC technique provides higher performance in terms of sidelobes suppression with 0 dB overshoot, less computational complexity and less throughput-loss compared to previous constrained-AIC methods. For multiple transmit antennas, we propose two novel AIC techniques employing main ideas behind bulk and per-tone transmit antenna selection (TAS) approaches. Simulation results show that although both techniques provide identical notch creation, the per-tone TAS-AIC technique has higher spectral efficiency

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed
    corecore