847 research outputs found

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    UBIDEV: a homogeneous service framework for pervasive computing environments

    Get PDF
    This dissertation studies the heterogeneity problem of pervasive computing system from the viewpoint of an infrastructure aiming to provide a service-oriented application model. From Distributed System passing through mobile computing, pervasive computing is presented as a step forward in ubiquitous availability of services and proliferation of interacting autonomous entities. To better understand the problems related to the heterogeneous and dynamic nature of pervasive computing environments, we need to analyze the structure of a pervasive computing system from its physical and service dimension. The physical dimension describes the physical environment together wit the technology infrastructure that characterizes the interactions and the relations within the environment; the service dimension represents the services (being them software or not) the environment is able to provide [Nor99]. To better separate the constrains and the functionalities of a pervasive computing system, this dissertation classifies it in terms of resources, context, classification, services, coordination and application. UBIDEV, as the key result of this dissertation, introduces a unified model helping the design and the implementation of applications for heterogeneous and dynamic environments. This model is composed of the following concepts: • Resource: all elements of the environment that are manipulated by the application, they are the atomic abstraction unit of the model. • Context: all information coming from the environment that is used by the application to adapts its behavior. Context contains resources and services and defines their role in the application. • Classification: the environment is classified according to the application ontology in order to ground the generic conceptual model of the application to the specific environment. It defines the basic semantic level of interoperability. • Service: the functionalities supported by the system; each service manipulates one or more resources. Applications are defined as a coordination and adaptation of services. • Coordination: all aspects related to service composition and execution as well as the use of the contextual information are captured by the coordination concept. • Application Ontology: represents the viewpoint of the application on the specific context; it defines the high level semantic of resources, services and context. Applying the design paradigm proposed by UBIDEV, allows to describe applications according to a Service Oriented Architecture[Bie02], and to focus on application functionalities rather than their relations with the physical devices. Keywords: pervasive computing, homogenous environment, service-oriented, heterogeneity problem, coordination model, context model, resource management, service management, application interfaces, ontology, semantic services, interaction logic, description logic.Questa dissertazione studia il problema della eterogeneit`a nei sistemi pervasivi proponendo una infrastruttura basata su un modello orientato ai servizi. I sistemi pervasivi sono presentati come un’evoluzione naturale dei sistemi distribuiti, passando attraverso mobile computing, grazie ad una disponibilit`a ubiqua di servizi (sempre, ovunque ed in qualunque modo) e ad loro e con l’ambiente stesso. Al fine di meglio comprendere i problemi legati allintrinseca eterogeneit`a dei sistemi pervasivi, dobbiamo prima descrivere la struttura fondamentale di questi sistemi classificandoli attraverso la loro dimensione fisica e quella dei loro servizi. La dimensione fisica descrive l’ambiente fisico e tutti i dispositivi che fanno parte del contesto della applicazione. La dimensione dei servizi descrive le funzionalit`a (siano esse software o no) che l’ambiente `e in grado di fornire [Nor99]. I sistemi pervasivi vengono cos`ı classificati attraverso una metrica pi `u formale del tipo risorse, contesto, servizi, coordinazione ed applicazione. UBIDEV, come risultato di questa dissertazione, introduce un modello uniforme per la descrizione e lo sviluppo di applicazioni in ambienti dinamici ed eterogenei. Il modello `e composto dai seguenti concetti di base: • Risorse: gli elementi dell’ambiente fisico che fanno parte del modello dellapplicazione. Questi rappresentano l’unit`a di astrazione atomica di tutto il modello UBIDEV. • Contesto: le informazioni sullo stato dell’ambiente che il sistema utilizza per adattare il comportamento dell’applicazione. Il contesto include informazioni legate alle risorse, ai servizi ed alle relazioni che li legano. • Classificazione: l’ambiente viene classificato sulla base di una ontologia che rappresenta il punto di accordo a cui tutti i moduli di sistema fanno riferimento. Questa classificazione rappresenta il modello concettuale dell’applicazione che si riflette sull’intero ambiente. Si definisce cos`ı la semantica di base per tutto il sistema. • Servizi: le funzionalit`a che il sistema `e in grado di fornire; ogni servizio `e descritto in termini di trasformazione di una o pi `u risorse. Le applicazioni sono cos`ı definite in termini di cooperazione tra servizi autonomi. • Coordinazione: tutti gli aspetti legati alla composizione ed alla esecuzione di servizi cos`ı come l’elaborazione dell’informazione contestuale. • Ontologia dell’Applicazione: rappresenta il punto di vista dell’applicazione; definisce la semantica delle risorse, dei servizi e dell’informazione contestuale. Applicando il paradigma proposto da UBIDEV, si possono descrivere applicazioni in accordo con un modello Service-oriented [Bie02] ed, al tempo stesso, ridurre l’applicazione stessa alle sue funzionalit`a di alto livello senza intervenire troppo su come queste funzionalit` a devono essere realizzate dalle singole componenti fisiche

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    Context-aware gestural interaction in the smart environments of the ubiquitous computing era

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyTechnology is becoming pervasive and the current interfaces are not adequate for the interaction with the smart environments of the ubiquitous computing era. Recently, researchers have started to address this issue introducing the concept of natural user interface, which is mainly based on gestural interactions. Many issues are still open in this emerging domain and, in particular, there is a lack of common guidelines for coherent implementation of gestural interfaces. This research investigates gestural interactions between humans and smart environments. It proposes a novel framework for the high-level organization of the context information. The framework is conceived to provide the support for a novel approach using functional gestures to reduce the gesture ambiguity and the number of gestures in taxonomies and improve the usability. In order to validate this framework, a proof-of-concept has been developed. A prototype has been developed by implementing a novel method for the view-invariant recognition of deictic and dynamic gestures. Tests have been conducted to assess the gesture recognition accuracy and the usability of the interfaces developed following the proposed framework. The results show that the method provides optimal gesture recognition from very different view-points whilst the usability tests have yielded high scores. Further investigation on the context information has been performed tackling the problem of user status. It is intended as human activity and a technique based on an innovative application of electromyography is proposed. The tests show that the proposed technique has achieved good activity recognition accuracy. The context is treated also as system status. In ubiquitous computing, the system can adopt different paradigms: wearable, environmental and pervasive. A novel paradigm, called synergistic paradigm, is presented combining the advantages of the wearable and environmental paradigms. Moreover, it augments the interaction possibilities of the user and ensures better gesture recognition accuracy than with the other paradigms

    DIVE on the internet

    Get PDF
    This dissertation reports research and development of a platform for Collaborative Virtual Environments (CVEs). It has particularly focused on two major challenges: supporting the rapid development of scalable applications and easing their deployment on the Internet. This work employs a research method based on prototyping and refinement and promotes the use of this method for application development. A number of the solutions herein are in line with other CVE systems. One of the strengths of this work consists in a global approach to the issues raised by CVEs and the recognition that such complex problems are best tackled using a multi-disciplinary approach that understands both user and system requirements. CVE application deployment is aided by an overlay network that is able to complement any IP multicast infrastructure in place. Apart from complementing a weakly deployed worldwide multicast, this infrastructure provides for a certain degree of introspection, remote controlling and visualisation. As such, it forms an important aid in assessing the scalability of running applications. This scalability is further facilitated by specialised object distribution algorithms and an open framework for the implementation of novel partitioning techniques. CVE application development is eased by a scripting language, which enables rapid development and favours experimentation. This scripting language interfaces many aspects of the system and enables the prototyping of distribution-related components as well as user interfaces. It is the key construct of a distributed environment to which components, written in different languages, connect and onto which they operate in a network abstracted manner. The solutions proposed are exemplified and strengthened by three collaborative applications. The Dive room system is a virtual environment modelled after the room metaphor and supporting asynchronous and synchronous cooperative work. WebPath is a companion application to a Web browser that seeks to make the current history of page visits more visible and usable. Finally, the London travel demonstrator supports travellers by providing an environment where they can explore the city, utilise group collaboration facilities, rehearse particular journeys and access tourist information data

    Model-Driven Information Security Risk Assessment of Socio-Technical Systems

    Get PDF

    Improving command selection in smart environments by exploiting spatial constancy

    Get PDF
    With the a steadily increasing number of digital devices, our environments are becoming increasingly smarter: we can now use our tablets to control our TV, access our recipe database while cooking, and remotely turn lights on and off. Currently, this Human-Environment Interaction (HEI) is limited to in-place interfaces, where people have to walk up to a mounted set of switches and buttons, and navigation-based interaction, where people have to navigate on-screen menus, for example on a smart-phone, tablet, or TV screen. Unfortunately, there are numerous scenarios in which neither of these two interaction paradigms provide fast and convenient access to digital artifacts and system commands. People, for example, might not want to touch an interaction device because their hands are dirty from cooking: they want device-free interaction. Or people might not want to have to look at a screen because it would interrupt their current task: they want system-feedback-free interaction. Currently, there is no interaction paradigm for smart environments that allows people for these kinds of interactions. In my dissertation, I introduce Room-based Interaction to solve this problem of HEI. With room-based interaction, people associate digital artifacts and system commands with real-world objects in the environment and point toward these real-world proxy objects for selecting the associated digital artifact. The design of room-based interaction is informed by a theoretical analysis of navigation- and pointing-based selection techniques, where I investigated the cognitive systems involved in executing a selection. An evaluation of room-based interaction in three user studies and a comparison with existing HEI techniques revealed that room-based interaction solves many shortcomings of existing HEI techniques: the use of real-world proxy objects makes it easy for people to learn the interaction technique and to perform accurate pointing gestures, and it allows for system-feedback-free interaction; the use of the environment as flat input space makes selections fast; the use of mid-air full-arm pointing gestures allows for device-free interaction and increases awareness of other’s interactions with the environment. Overall, I present an alternative selection paradigm for smart environments that is superior to existing techniques in many common HEI-scenarios. This new paradigm can make HEI more user-friendly, broaden the use cases of smart environments, and increase their acceptance for the average user

    Application-driven visual computing towards industry 4.0 2018

    Get PDF
    245 p.La Tesis recoge contribuciones en tres campos: 1. Agentes Virtuales Interactivos: autónomos, modulares, escalables, ubicuos y atractivos para el usuario. Estos IVA pueden interactuar con los usuarios de manera natural.2. Entornos de RV/RA Inmersivos: RV en la planificación de la producción, el diseño de producto, la simulación de procesos, pruebas y verificación. El Operario Virtual muestra cómo la RV y los Co-bots pueden trabajar en un entorno seguro. En el Operario Aumentado la RA muestra información relevante al trabajador de una manera no intrusiva. 3. Gestión Interactiva de Modelos 3D: gestión online y visualización de modelos CAD multimedia, mediante conversión automática de modelos CAD a la Web. La tecnología Web3D permite la visualización e interacción de estos modelos en dispositivos móviles de baja potencia.Además, estas contribuciones han permitido analizar los desafíos presentados por Industry 4.0. La tesis ha contribuido a proporcionar una prueba de concepto para algunos de esos desafíos: en factores humanos, simulación, visualización e integración de modelos
    corecore