10,539 research outputs found

    Identifying Real Estate Opportunities using Machine Learning

    Full text link
    The real estate market is exposed to many fluctuations in prices because of existing correlations with many variables, some of which cannot be controlled or might even be unknown. Housing prices can increase rapidly (or in some cases, also drop very fast), yet the numerous listings available online where houses are sold or rented are not likely to be updated that often. In some cases, individuals interested in selling a house (or apartment) might include it in some online listing, and forget about updating the price. In other cases, some individuals might be interested in deliberately setting a price below the market price in order to sell the home faster, for various reasons. In this paper, we aim at developing a machine learning application that identifies opportunities in the real estate market in real time, i.e., houses that are listed with a price substantially below the market price. This program can be useful for investors interested in the housing market. We have focused in a use case considering real estate assets located in the Salamanca district in Madrid (Spain) and listed in the most relevant Spanish online site for home sales and rentals. The application is formally implemented as a regression problem that tries to estimate the market price of a house given features retrieved from public online listings. For building this application, we have performed a feature engineering stage in order to discover relevant features that allows for attaining a high predictive performance. Several machine learning algorithms have been tested, including regression trees, k-nearest neighbors, support vector machines and neural networks, identifying advantages and handicaps of each of them.Comment: 24 pages, 13 figures, 5 table

    Estimation of Default Probabilities with Support Vector Machines

    Get PDF
    Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to estimate default probabilities of German firms. Our analysis is based on the Creditreform database. The results reveal that the most important eight predictors related to bankruptcy for these German firms belong to the ratios of activity, profitability, liquidity, leverage and the percentage of incremental inventories. Based on the performance measures, the SVM tool can predict a firms default risk and identify the insolvent firm more accurately than the benchmark logit model. The sensitivity investigation and a corresponding visualization tool reveal that the classifying ability of SVM appears to be superior over a wide range of the SVM parameters. Based on the nonparametric Nadaraya-Watson estimator, the expected returns predicted by the SVM for regression have a significant positive linear relationship with the risk scores obtained for classification. This evidence is stronger than empirical results for the CAPM based on a linear regression and confirms that higher risks need to be compensated by higher potential returns.Support Vector Machine, Bankruptcy, Default Probabilities Prediction, Expected Profitability, CAPM.

    Machine learning approach for credit score analysis : a case study of predicting mortgage loan defaults

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Statistics and Information Management specialized in Risk Analysis and ManagementTo effectively manage credit score analysis, financial institutions instigated techniques and models that are mainly designed for the purpose of improving the process assessing creditworthiness during the credit evaluation process. The foremost objective is to discriminate their clients – borrowers – to fall either in the non-defaulter group, that is more likely to pay their financial obligations, or the defaulter one which has a higher probability of failing to pay their debts. In this paper, we devote to use machine learning models in the prediction of mortgage defaults. This study employs various single classification machine learning methodologies including Logistic Regression, Classification and Regression Trees, Random Forest, K-Nearest Neighbors, and Support Vector Machine. To further improve the predictive power, a meta-algorithm ensemble approach – stacking – will be introduced to combine the outputs – probabilities – of the afore mentioned methods. The sample for this study is solely based on the publicly provided dataset by Freddie Mac. By modelling this approach, we achieve an improvement in the model predictability performance. We then compare the performance of each model, and the meta-learner, by plotting the ROC Curve and computing the AUC rate. This study is an extension of various preceding studies that used different techniques to further enhance the model predictivity. Finally, our results are compared with work from different authors.Para gerir com eficácia a análise de risco de crédito, as instituições financeiras desenvolveram técnicas e modelos que foram projetados principalmente para melhorar o processo de avaliação da qualidade de crédito durante o processo de avaliação de crédito. O objetivo final é classifica os seus clientes - tomadores de empréstimos - entre aqueles que tem maior probabilidade de pagar suas obrigações financeiras, e os potenciais incumpridores que têm maior probabilidade de entrar em default. Neste artigo, nos dedicamos a usar modelos de aprendizado de máquina na previsão de defaults de hipoteca. Este estudo emprega várias metodologias de aprendizado de máquina de classificação única, incluindo Regressão Logística, Classification and Regression Trees, Random Forest, K-Nearest Neighbors, and Support Vector Machine. Para melhorar ainda mais o poder preditivo, a abordagem do conjunto de meta-algoritmos - stacking - será introduzida para combinar as saídas - probabilidades - dos métodos acima mencionados. A amostra deste estudo é baseada exclusivamente no conjunto de dados fornecido publicamente pela Freddie Mac. Ao modelar essa abordagem, alcançamos uma melhoria no desempenho do modelo de previsibilidade. Em seguida, comparamos o desempenho de cada modelo e o meta-aprendiz, plotando a Curva ROC e calculando a taxa de AUC. Este estudo é uma extensão de vários estudos anteriores que usaram diferentes técnicas para melhorar ainda mais o modelo preditivo. Finalmente, nossos resultados são comparados com trabalhos de diferentes autores

    Gibbs Max-margin Topic Models with Data Augmentation

    Full text link
    Max-margin learning is a powerful approach to building classifiers and structured output predictors. Recent work on max-margin supervised topic models has successfully integrated it with Bayesian topic models to discover discriminative latent semantic structures and make accurate predictions for unseen testing data. However, the resulting learning problems are usually hard to solve because of the non-smoothness of the margin loss. Existing approaches to building max-margin supervised topic models rely on an iterative procedure to solve multiple latent SVM subproblems with additional mean-field assumptions on the desired posterior distributions. This paper presents an alternative approach by defining a new max-margin loss. Namely, we present Gibbs max-margin supervised topic models, a latent variable Gibbs classifier to discover hidden topic representations for various tasks, including classification, regression and multi-task learning. Gibbs max-margin supervised topic models minimize an expected margin loss, which is an upper bound of the existing margin loss derived from an expected prediction rule. By introducing augmented variables and integrating out the Dirichlet variables analytically by conjugacy, we develop simple Gibbs sampling algorithms with no restricting assumptions and no need to solve SVM subproblems. Furthermore, each step of the "augment-and-collapse" Gibbs sampling algorithms has an analytical conditional distribution, from which samples can be easily drawn. Experimental results demonstrate significant improvements on time efficiency. The classification performance is also significantly improved over competitors on binary, multi-class and multi-label classification tasks.Comment: 35 page

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF
    corecore