9,061 research outputs found

    Making smart cities smarter using artificial intelligence techniques for smarter mobility

    Get PDF
    The term Smart City is tipically applied to urban and metropolitan areas where Information and Communication Technologies provide ways to enable social, cultural and urban development, improving social and political capacities and/or efficiency. In this paper we will show the potential of Artificial Intelligence techniques for augmenting ICT solutions to both increase the cities competiveness but also the active participation of citizens in those processes, making Smart Cities smarter. As example we will describe the usage of Artificial Intellgence techniques to provide Smart Mobility in the context of the SUPERHUB Project.Postprint (published version

    Mobility choices - an instrument for precise automatized travel behavior detection & analysis

    Get PDF
    Within the Mobility Choices (MC) project we have developed an app that allows users to record their travel behavior and encourages them to try out new means of transportation that may better fit their preferences. Tracks explicitly released by the users are anonymized and can be analyzed by authorized institutions. For recorded tracks, the freely available app automatically determines the segments with their transportation mode; analyzes the track according to the criteria environment, health, costs, and time; and indicates alternative connections that better fit the criteria, which can individually be configured by the user. In the second step, the users can edit their tracks and release them for further analysis by authorized institutions. The system is complemented by a Web-based analysis program that helps authorized institutions carry out specific evaluations of traffic flows based on the released tracks of the app users. The automatic transportation mode detection of the system reaches an accuracy of 97%. This requires only minimal corrections by the user, which can easily be done directly in the app before releasing a track. All this enables significantly more accurate surveys of transport behavior than the usual time-consuming manual (non-automated) approaches, based on questionnaires

    Using a Smart City IoT to Incentivise and Target Shifts in Mobility Behaviour-Is It a Piece of Pie?

    Get PDF
    The work presented in this paper is a central part of the research and development in the SUNSET project (contract No. 270228), supported by the 7th Framework Research Program funded by the European Commission. The authors also acknowledge the support of other SUNSET consortium members in helping to create and evaluate the SUNSET tripzoom system

    A preliminary safety evaluation of route guidance comparing different MMI concepts

    Get PDF

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System
    corecore