449 research outputs found

    Flight Dynamics-based Recovery of a UAV Trajectory using Ground Cameras

    Get PDF
    We propose a new method to estimate the 6-dof trajectory of a flying object such as a quadrotor UAV within a 3D airspace monitored using multiple fixed ground cameras. It is based on a new structure from motion formulation for the 3D reconstruction of a single moving point with known motion dynamics. Our main contribution is a new bundle adjustment procedure which in addition to optimizing the camera poses, regularizes the point trajectory using a prior based on motion dynamics (or specifically flight dynamics). Furthermore, we can infer the underlying control input sent to the UAV's autopilot that determined its flight trajectory. Our method requires neither perfect single-view tracking nor appearance matching across views. For robustness, we allow the tracker to generate multiple detections per frame in each video. The true detections and the data association across videos is estimated using robust multi-view triangulation and subsequently refined during our bundle adjustment procedure. Quantitative evaluation on simulated data and experiments on real videos from indoor and outdoor scenes demonstrates the effectiveness of our method

    Parallel Tracking and Mapping for Manipulation Applications with Golem Krang

    Get PDF
    Implementing a simultaneous localization and mapping system and an image semantic segmentation method on a mobile manipulation. The application of the SLAM is working towards navigating among obstacles in unknown environments. The object detection method will be integrated for future manipulation tasks such as grasping. This work will be demonstrated on a real robotics hardware system in the lab.Outgoin

    A distributed architecture for unmanned aerial systems based on publish/subscribe messaging and simultaneous localisation and mapping (SLAM) testbed

    Get PDF
    A dissertation submitted in fulfilment for the degree of Master of Science. School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa, November 2017The increased capabilities and lower cost of Micro Aerial Vehicles (MAVs) unveil big opportunities for a rapidly growing number of civilian and commercial applications. Some missions require direct control using a receiver in a point-to-point connection, involving one or very few MAVs. An alternative class of mission is remotely controlled, with the control of the drone automated to a certain extent using mission planning software and autopilot systems. For most emerging missions, there is a need for more autonomous, cooperative control of MAVs, as well as more complex data processing from sensors like cameras and laser scanners. In the last decade, this has given rise to an extensive research from both academia and industry. This research direction applies robotics and computer vision concepts to Unmanned Aerial Systems (UASs). However, UASs are often designed for specific hardware and software, thus providing limited integration, interoperability and re-usability across different missions. In addition, there are numerous open issues related to UAS command, control and communication(C3), and multi-MAVs. We argue and elaborate throughout this dissertation that some of the recent standardbased publish/subscribe communication protocols can solve many of these challenges and meet the non-functional requirements of MAV robotics applications. This dissertation assesses the MQTT, DDS and TCPROS protocols in a distributed architecture of a UAS control system and Ground Control Station software. While TCPROS has been the leading robotics communication transport for ROS applications, MQTT and DDS are lightweight enough to be used for data exchange between distributed systems of aerial robots. Furthermore, MQTT and DDS are based on industry standards to foster communication interoperability of “things”. Both protocols have been extensively presented to address many of today’s needs related to networks based on the internet of things (IoT). For example, MQTT has been used to exchange data with space probes, whereas DDS was employed for aerospace defence and applications of smart cities. We designed and implemented a distributed UAS architecture based on each publish/subscribe protocol TCPROS, MQTT and DDS. The proposed communication systems were tested with a vision-based Simultaneous Localisation and Mapping (SLAM) system involving three Parrot AR Drone2 MAVs. Within the context of this study, MQTT and DDS messaging frameworks serve the purpose of abstracting UAS complexity and heterogeneity. Additionally, these protocols are expected to provide low-latency communication and scale up to meet the requirements of real-time remote sensing applications. The most important contribution of this work is the implementation of a complete distributed communication architecture for multi-MAVs. Furthermore, we assess the viability of this architecture and benchmark the performance of the protocols in relation to an autonomous quadcopter navigation testbed composed of a SLAM algorithm, an extended Kalman filter and a PID controller.XL201

    A data-fusion approach to motion-stereo

    Get PDF
    This paper introduces a novel method for performing motion--stereo, based on dynamic integration of depth (or its proxy) measures obtained by pairwise stereo matching of video frames. The focus is on the data fusion issue raised by the motion--stereo approach, which is solved within a Kalman filtering framework. Integration occurs along the temporal and spatial dimension, so that the final measure for a pixel results from the combination of measures of the same pixel in time and whose of its neighbors. The method has been validated on both synthetic and natural images, using the simplest stereo matching strategy and a range of different confidence measures, and has been compared to baseline and optimal strategies

    Contributions to autonomous robust navigation of mobile robots in industrial applications

    Get PDF
    151 p.Un aspecto en el que las plataformas móviles actuales se quedan atrás en comparación con el punto que se ha alcanzado ya en la industria es la precisión. La cuarta revolución industrial trajo consigo la implantación de maquinaria en la mayor parte de procesos industriales, y una fortaleza de estos es su repetitividad. Los robots móviles autónomos, que son los que ofrecen una mayor flexibilidad, carecen de esta capacidad, principalmente debido al ruido inherente a las lecturas ofrecidas por los sensores y al dinamismo existente en la mayoría de entornos. Por este motivo, gran parte de este trabajo se centra en cuantificar el error cometido por los principales métodos de mapeado y localización de robots móviles,ofreciendo distintas alternativas para la mejora del posicionamiento.Asimismo, las principales fuentes de información con las que los robots móviles son capaces de realizarlas funciones descritas son los sensores exteroceptivos, los cuales miden el entorno y no tanto el estado del propio robot. Por esta misma razón, algunos métodos son muy dependientes del escenario en el que se han desarrollado, y no obtienen los mismos resultados cuando este varía. La mayoría de plataformas móviles generan un mapa que representa el entorno que les rodea, y fundamentan en este muchos de sus cálculos para realizar acciones como navegar. Dicha generación es un proceso que requiere de intervención humana en la mayoría de casos y que tiene una gran repercusión en el posterior funcionamiento del robot. En la última parte del presente trabajo, se propone un método que pretende optimizar este paso para así generar un modelo más rico del entorno sin requerir de tiempo adicional para ello

    Visual inertial SLAM dense mapping for indoor autonomous navigation

    Get PDF
    openIndoor navigation is a really important topic for many robotics application. The vast majority of tasks that a robot can complete in an indoor environment depends on the fact that the robot is able to orient itself inside it. SLAM algorithms give this ability to the robot but their performance strongly depends on the sensors on which the system is built. This thesis will focus on building a comprehensive starting guide on visual inertial SLAM (in particular ORB-SLAM3), which use only monocular camera to recover camera position and build a map of the surroundings, and accelerometer data to recover real world scale. In this work ORB-SLAM3 will be integrated with a relative depth estimation neural network to build a dense map of the environment rather than a sparse one. Dense map are in fact really fundamental for indoor navigation

    Non-Parametric Learning for Monocular Visual Odometry

    Get PDF
    This thesis addresses the problem of incremental localization from visual information, a scenario commonly known as visual odometry. Current visual odometry algorithms are heavily dependent on camera calibration, using a pre-established geometric model to provide the transformation between input (optical flow estimates) and output (vehicle motion estimates) information. A novel approach to visual odometry is proposed in this thesis where the need for camera calibration, or even for a geometric model, is circumvented by the use of machine learning principles and techniques. A non-parametric Bayesian regression technique, the Gaussian Process (GP), is used to elect the most probable transformation function hypothesis from input to output, based on training data collected prior and during navigation. Other than eliminating the need for a geometric model and traditional camera calibration, this approach also allows for scale recovery even in a monocular configuration, and provides a natural treatment of uncertainties due to the probabilistic nature of GPs. Several extensions to the traditional GP framework are introduced and discussed in depth, and they constitute the core of the contributions of this thesis to the machine learning and robotics community. The proposed framework is tested in a wide variety of scenarios, ranging from urban and off-road ground vehicles to unconstrained 3D unmanned aircrafts. The results show a significant improvement over traditional visual odometry algorithms, and also surpass results obtained using other sensors, such as laser scanners and IMUs. The incorporation of these results to a SLAM scenario, using a Exact Sparse Information Filter (ESIF), is shown to decrease global uncertainty by exploiting revisited areas of the environment. Finally, a technique for the automatic segmentation of dynamic objects is presented, as a way to increase the robustness of image information and further improve visual odometry results
    corecore