65 research outputs found

    Bayesian Speaker Adaptation Based on a New Hierarchical Probabilistic Model

    Get PDF
    In this paper, a new hierarchical Bayesian speaker adaptation method called HMAP is proposed that combines the advantages of three conventional algorithms, maximum a posteriori (MAP), maximum-likelihood linear regression (MLLR), and eigenvoice, resulting in excellent performance across a wide range of adaptation conditions. The new method efficiently utilizes intra-speaker and inter-speaker correlation information through modeling phone and speaker subspaces in a consistent hierarchical Bayesian way. The phone variations for a specific speaker are assumed to be located in a low-dimensional subspace. The phone coordinate, which is shared among different speakers, implicitly contains the intra-speaker correlation information. For a specific speaker, the phone variation, represented by speaker-dependent eigenphones, are concatenated into a supervector. The eigenphone supervector space is also a low dimensional speaker subspace, which contains inter-speaker correlation information. Using principal component analysis (PCA), a new hierarchical probabilistic model for the generation of the speech observations is obtained. Speaker adaptation based on the new hierarchical model is derived using the maximum a posteriori criterion in a top-down manner. Both batch adaptation and online adaptation schemes are proposed. With tuned parameters, the new method can handle varying amounts of adaptation data automatically and efficiently. Experimental results on a Mandarin Chinese continuous speech recognition task show good performance under all testing conditions

    Speech Synthesis Based on Hidden Markov Models

    Get PDF

    A Study of the Automatic Speech Recognition Process and Speaker Adaptation

    Get PDF
    This thesis considers the entire automated speech recognition process and presents a standardised approach to LVCSR experimentation with HMMs. It also discusses various approaches to speaker adaptation such as MLLR and multiscale, and presents experimental results for cross­-task speaker adaptation. An analysis of training parameters and data sufficiency for reasonable system performance estimates are also included. It is found that Maximum Likelihood Linear Regression (MLLR) supervised adaptation can result in 6% reduction (absolute) in word error rate given only one minute of adaptation data, as compared with an unadapted model set trained on a different task. The unadapted system performed at 24% WER and the adapted system at 18% WER. This is achieved with only 4 to 7 adaptation classes per speaker, as generated from a regression tree

    Confidence Scoring and Speaker Adaptation in Mobile Automatic Speech Recognition Applications

    Get PDF
    Generally, the user group of a language is remarkably diverse in terms of speaker-specific characteristics such as dialect and speaking style. Hence, quality of spoken content varies notably from one individual to another. This diversity causes problems for Automatic Speech Recognition systems. An Automatic Speech Recognition system should be able to assess the hypothesised results. This can be done by evaluating a confidence measure on the recognition results and comparing the resulting measure to a specified threshold. This threshold value, referred to as confidence score, informs how reliable a particular recognition result is for the given speech. A system should perform optimally irrespective of input speaker characteristics. However, most systems are inflexible and non-adaptive and thus, speaker adaptability can be improved. For achieving these purposes, a solid criterion is required to evaluate the quality of spoken content and the system should be made robust and adaptive towards new speakers as well. This thesis implements a confidence score using posterior probabilities to examine the quality of the output, based on the speech data and corpora provided by Devoca Oy. Furthermore, speaker adaptation algorithms: Maximum Likelihood Linear Regression and Maximum a Posteriori are applied on a GMM-HMM system and their results are compared. Experiments show that Maximum a Posteriori adaptation brings 2% to 25% improvement in word error rates of semi-continuous model and is recommended for use in the commercial product. The results of other methods are also reported. In addition, word graph is suggested as the method for obtaining posterior probabilities. Since it guarantees no such improvement in the results, the confidence score is proposed as an optional feature for the system

    Stacked transformations for foreign accented speech recognition

    Get PDF
    Nowadays, large vocabulary speech recognizers exist that are performing reasonably well for specific conditions and environments. When the conditions change however, performance degrades quickly. For example, when the person to be recognized has a foreign accent the conditions could mismatch with the model, resulting in high error rates. The problem in recognizing foreign accented speech is the lack of sufficient training data. If enough data would be available of the same accent, from numerous different speakers, a well performing accented speech model could be built. Besides the lack of speech data, there are more problems with training a complete new model. It costs a lot of computational resources and storage space to train a new model. If speakers with different accents must be recognized, these costs explode as every accent needs retraining. A common solution for preventing retraining is to adapt (transform) an existing model, such that it better matches the recognition conditions. In this thesis multiple different adaptation transformations are considered. Speaker Transformations are using speech data from the target speaker, Accent Transformations use speech data from different speakers, who have the same accent as the speech that needs to be recognized. Neighbour Transformations are estimated with speech from different speakers that are automatically determined to be similar to the target speaker. Novelty in this work is the stack wise combination of these adaptations. Instead of using a single transformation, multiple transformations are 'stacked together'. Because all adaptations except the speaker specific adaptation can be precomputed, no extra computational costs at recognition time occur compared to normal speaker adaptation and the adaptations that can be precomputed are much more refined as they can use more and better adaptation data. In addition, they need only a very small amount storage space, compared to a retrained model. The effect of Stacked Transformations is that the models have a better fit for the recognition utterances. When compared to no adaptation, improvements up to 30% in Word Error Rate can be achieved. In adaptation with a small number (5) of sentences, improvements up to 15% are gained

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Advancing Electromyographic Continuous Speech Recognition: Signal Preprocessing and Modeling

    Get PDF
    Speech is the natural medium of human communication, but audible speech can be overheard by bystanders and excludes speech-disabled people. This work presents a speech recognizer based on surface electromyography, where electric potentials of the facial muscles are captured by surface electrodes, allowing speech to be processed nonacoustically. A system which was state-of-the-art at the beginning of this book is substantially improved in terms of accuracy, flexibility, and robustness

    Automatic speech recognition: from study to practice

    Get PDF
    Today, automatic speech recognition (ASR) is widely used for different purposes such as robotics, multimedia, medical and industrial application. Although many researches have been performed in this field in the past decades, there is still a lot of room to work. In order to start working in this area, complete knowledge of ASR systems as well as their weak points and problems is inevitable. Besides that, practical experience improves the theoretical knowledge understanding in a reliable way. Regarding to these facts, in this master thesis, we have first reviewed the principal structure of the standard HMM-based ASR systems from technical point of view. This includes, feature extraction, acoustic modeling, language modeling and decoding. Then, the most significant challenging points in ASR systems is discussed. These challenging points address different internal components characteristics or external agents which affect the ASR systems performance. Furthermore, we have implemented a Spanish language recognizer using HTK toolkit. Finally, two open research lines according to the studies of different sources in the field of ASR has been suggested for future work

    Automatic Speech Recognition for Low-resource Languages and Accents Using Multilingual and Crosslingual Information

    Get PDF
    This thesis explores methods to rapidly bootstrap automatic speech recognition systems for languages, which lack resources for speech and language processing. We focus on finding approaches which allow using data from multiple languages to improve the performance for those languages on different levels, such as feature extraction, acoustic modeling and language modeling. Under application aspects, this thesis also includes research work on non-native and Code-Switching speech

    Automatic Speech Recognition for ageing voices

    Get PDF
    With ageing, human voices undergo several changes which are typically characterised by increased hoarseness, breathiness, changes in articulatory patterns and slower speaking rate. The focus of this thesis is to understand the impact of ageing on Automatic Speech Recognition (ASR) performance and improve the ASR accuracies for older voices. Baseline results on three corpora indicate that the word error rates (WER) for older adults are significantly higher than those of younger adults and the decrease in accuracies is higher for males speakers as compared to females. Acoustic parameters such as jitter and shimmer that measure glottal source disfluencies were found to be significantly higher for older adults. However, the hypothesis that these changes explain the differences in WER for the two age groups is proven incorrect. Experiments with artificial introduction of glottal source disfluencies in speech from younger adults do not display a significant impact on WERs. Changes in fundamental frequency observed quite often in older voices has a marginal impact on ASR accuracies. Analysis of phoneme errors between younger and older speakers shows a pattern of certain phonemes especially lower vowels getting more affected with ageing. These changes however are seen to vary across speakers. Another factor that is strongly associated with ageing voices is a decrease in the rate of speech. Experiments to analyse the impact of slower speaking rate on ASR accuracies indicate that the insertion errors increase while decoding slower speech with models trained on relatively faster speech. We then propose a way to characterise speakers in acoustic space based on speaker adaptation transforms and observe that speakers (especially males) can be segregated with reasonable accuracies based on age. Inspired by this, we look at supervised hierarchical acoustic models based on gender and age. Significant improvements in word accuracies are achieved over the baseline results with such models. The idea is then extended to construct unsupervised hierarchical models which also outperform the baseline models by a good margin. Finally, we hypothesize that the ASR accuracies can be improved by augmenting the adaptation data with speech from acoustically closest speakers. A strategy to select the augmentation speakers is proposed. Experimental results on two corpora indicate that the hypothesis holds true only when the amount of available adaptation is limited to a few seconds. The efficacy of such a speaker selection strategy is analysed for both younger and older adults
    corecore