78 research outputs found

    Space complexity in polynomial calculus

    Get PDF
    During the last decade, an active line of research in proof complexity has been to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity measure of intrinsic interest, space is also an important issue in SAT solving, and so research has mostly focused on weak systems that are used by SAT solvers. There has been a relatively long sequence of papers on space in resolution, which is now reasonably well understood from this point of view. For other natural candidates to study, however, such as polynomial calculus or cutting planes, very little has been known. We are not aware of any nontrivial space lower bounds for cutting planes, and for polynomial calculus the only lower bound has been for CNF formulas of unbounded width in [Alekhnovich et al. ’02], where the space lower bound is smaller than the initial width of the clauses in the formulas. Thus, in particular, it has been consistent with current knowledge that polynomial calculus could be able to refute any k-CNF formula in constant space. In this paper, we prove several new results on space in polynomial calculus (PC), and in the extended proof system polynomial calculus resolution (PCR) studied in [Alekhnovich et al. ’02]: 1. We prove an Ω(n) space lower bound in PC for the canonical 3-CNF version of the pigeonhole principle formulas PHPm n with m pigeons and n holes, and show that this is tight. 2. For PCR, we prove an Ω(n) space lower bound for a bitwise encoding of the functional pigeonhole principle. These formulas have width O(log n), and hence this is an exponential improvement over [Alekhnovich et al. ’02] measured in the width of the formulas. 3. We then present another encoding of the pigeonhole principle that has constant width, and prove an Ω(n) space lower bound in PCR for these formulas as well. 4. Finally, we prove that any k-CNF formula can be refuted in PC in simultaneous exponential size and linear space (which holds for resolution and thus for PCR, but was not obviously the case for PC). We also characterize a natural class of CNF formulas for which the space complexity in resolution and PCR does not change when the formula is transformed into 3-CNF in the canonical way, something that we believe can be useful when proving PCR space lower bounds for other well-studied formula families in proof complexity

    Resolution Lower Bounds for Refutation Statements

    Get PDF
    For any unsatisfiable CNF formula we give an exponential lower bound on the size of resolution refutations of a propositional statement that the formula has a resolution refutation. We describe three applications. (1) An open question in (Atserias, M\"uller 2019) asks whether a certain natural propositional encoding of the above statement is hard for Resolution. We answer by giving an exponential size lower bound. (2) We show exponential resolution size lower bounds for reflection principles, thereby improving a result in (Atserias, Bonet 2004). (3) We provide new examples of CNFs that exponentially separate Res(2) from Resolution (an exponential separation of these two proof systems was originally proved in (Segerlind, Buss, Impagliazzo 2004))

    Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions

    Full text link
    For current state-of-the-art DPLL SAT-solvers the two main bottlenecks are the amounts of time and memory used. In proof complexity, these resources correspond to the length and space of resolution proofs. There has been a long line of research investigating these proof complexity measures, but while strong results have been established for length, our understanding of space and how it relates to length has remained quite poor. In particular, the question whether resolution proofs can be optimized for length and space simultaneously, or whether there are trade-offs between these two measures, has remained essentially open. In this paper, we remedy this situation by proving a host of length-space trade-off results for resolution. Our collection of trade-offs cover almost the whole range of values for the space complexity of formulas, and most of the trade-offs are superpolynomial or even exponential and essentially tight. Using similar techniques, we show that these trade-offs in fact extend to the exponentially stronger k-DNF resolution proof systems, which operate with formulas in disjunctive normal form with terms of bounded arity k. We also answer the open question whether the k-DNF resolution systems form a strict hierarchy with respect to space in the affirmative. Our key technical contribution is the following, somewhat surprising, theorem: Any CNF formula F can be transformed by simple variable substitution into a new formula F' such that if F has the right properties, F' can be proven in essentially the same length as F, whereas on the other hand the minimal number of lines one needs to keep in memory simultaneously in any proof of F' is lower-bounded by the minimal number of variables needed simultaneously in any proof of F. Applying this theorem to so-called pebbling formulas defined in terms of pebble games on directed acyclic graphs, we obtain our results.Comment: This paper is a merged and updated version of the two ECCC technical reports TR09-034 and TR09-047, and it hence subsumes these two report

    On the Limits of Sparsification

    Get PDF
    Abstract. Impagliazzo, Paturi and Zane (JCSS 2001) proved a sparsification lemma for k-CNFs: every k-CNF is a sub-exponential size disjunction of k-CNFs with a linear number of clauses. This lemma has subsequently played a key role in the study of the exact complexity of the satisfiability problem. A natural question is whether an analogous structural result holds for CNFs or even for broader non-uniform classes such as constant-depth circuits or Boolean formulae. We prove a very strong negative result in this connection: For every superlinear function f(n), there are CNFs of size f(n) which cannot be written as a disjunction of 2 n−εn CNFs each having a linear number of clauses for any ε> 0. We also give a hierarchy of such non-sparsifiable CNFs: For every k, there is a k ′ for which there are CNFs of size n k′ which cannot be written as a sub-exponential size disjunction of CNFs of size n k. Furthermore, our lower bounds hold not just against CNFs but against an arbitrary famil

    A separator theorem for hypergraphs and a CSP-SAT algorithm

    Get PDF
    We show that for every r≥2 there exists ϵr>0 such that any r-uniform hypergraph with m edges and maximum vertex degree o(m−−√) contains a set of at most (12−ϵr)m edges the removal of which breaks the hypergraph into connected components with at most m/2 edges. We use this to give an algorithm running in time d(1−ϵr)m that decides satisfiability of m-variable (d,k)-CSPs in which every variable appears in at most r constraints, where ϵr depends only on r and k∈o(m−−√). Furthermore our algorithm solves the corresponding #CSP-SAT and Max-CSP-SAT of these CSPs. We also show that CNF representations of unsatisfiable (2,k)-CSPs with variable frequency r can be refuted in tree-like resolution in size 2(1−ϵr)m. Furthermore for Tseitin formulas on graphs with degree at most k (which are (2,k)-CSPs) we give a deterministic algorithm finding such a refutation

    Bounded-depth Frege complexity of Tseitin formulas for all graphs

    Get PDF
    We prove that there is a constant K such that Tseitin formulas for a connected graph G requires proofs of size 2tw(G)javax.xml.bind.JAXBElement@531a834b in depth-d Frege systems for [Formula presented], where tw(G) is the treewidth of G. This extends HÃ¥stad's recent lower bound from grid graphs to any graph. Furthermore, we prove tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if a Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof of size 2tw(G)javax.xml.bind.JAXBElement@25a4b51fpoly(s). Through this result we settle the question posed by M. Alekhnovich and A. Razborov of showing that the class of Tseitin formulas is quasi-automatizable for resolution

    Lifting for Constant-Depth Circuits and Applications to MCSP

    Get PDF
    Lifting arguments show that the complexity of a function in one model is essentially that of a related function (often the composition of the original function with a small function called a gadget) in a more powerful model. Lifting has been used to prove strong lower bounds in communication complexity, proof complexity, circuit complexity and many other areas. We present a lifting construction for constant depth unbounded fan-in circuits. Given a function f, we construct a function g, so that the depth d+1 circuit complexity of g, with a certain restriction on bottom fan-in, is controlled by the depth d circuit complexity of f, with the same restriction. The function g is defined as f composed with a parity function. With some quantitative losses, average-case and general depth-d circuit complexity can be reduced to circuit complexity with this bottom fan-in restriction. As a consequence, an algorithm to approximate the depth d (for any d > 3) circuit complexity of given (truth tables of) Boolean functions yields an algorithm for approximating the depth 3 circuit complexity of functions, i.e., there are quasi-polynomial time mapping reductions between various gap-versions of AC?-MCSP. Our lifting results rely on a blockwise switching lemma that may be of independent interest. We also show some barriers on improving the efficiency of our reductions: such improvements would yield either surprisingly efficient algorithms for MCSP or stronger than known AC? circuit lower bounds
    • …
    corecore