34,469 research outputs found

    Improving reliability in multi-layer networks with Network Coding Protection

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A major concern among network providers is to endow their networks with the ability to withstand and recover from failures. In recent years, there is a trend in network research referred to as Network Coding Protection (NCP). NCP combines the use of network coding techniques with a proactive protection scheme with the aim of improving network reliability. Although today's network backbone is a multi-layer network formed by the convergence of IP/MPLS and Optical technologies, the information available in the literature related to the performance of NCP schemes in multi-layer network scenarios is yet scarce. In this paper, we propose a novel NCP scheme referred to as DPNC+. The novelty of DPNC+ is that it exploits cross-layer information in order to improve the reliability of multi-layer (IP/MPLS over Optical) networks against link failures. Our evaluation results show that reduction up to 50% -related to protection cost- can be obtained when using the proposed scheme compared to conventional proactive protection techniques.This work was supported by the Spanish Ministry of Economy under contract TEC2012-34682, and the Catalan Research Council (CIRIT) under contract 2009 SGR1508.Peer ReviewedPostprint (author's final draft

    Relay Selection for Wireless Communications Against Eavesdropping: A Security-Reliability Tradeoff Perspective

    Full text link
    This article examines the secrecy coding aided wireless communications from a source to a destination in the presence of an eavesdropper from a security-reliability tradeoff (SRT) perspective. Explicitly, the security is quantified in terms of the intercept probability experienced at the eavesdropper, while the outage probability encountered at the destination is used to measure the transmission reliability. We characterize the SRT of conventional direct transmission from the source to the destination and show that if the outage probability is increased, the intercept probability decreases, and vice versa. We first demonstrate that the employment of relay nodes for assisting the source-destination transmissions is capable of defending against eavesdropping, followed by quantifying the benefits of single-relay selection (SRS) as well as of multi-relay selection (MRS) schemes. More specifically, in the SRS scheme, only the single "best" relay is selected for forwarding the source signal to the destination, whereas the MRS scheme allows multiple relays to participate in this process. It is illustrated that both the SRS and MRS schemes achieve a better SRT than the conventional direct transmission, especially upon increasing the number of relays. Numerical results also show that as expected, the MRS outperforms the SRS in terms of its SRT. Additionally, we present some open challenges and future directions for the wireless relay aided physical-layer security.Comment: 16 pages, IEEE Network, 201

    Optimized Network-coded Scalable Video Multicasting over eMBMS Networks

    Get PDF
    Delivery of multicast video services over fourth generation (4G) networks such as 3GPP Long Term Evolution-Advanced (LTE-A) is gaining momentum. In this paper, we address the issue of efficiently multicasting layered video services by defining a novel resource allocation framework that aims to maximize the service coverage whilst keeping the radio resource footprint low. A key point in the proposed system mode is that the reliability of multicast video services is ensured by means of an Unequal Error Protection implementation of the Network Coding (UEP-NC) scheme. In addition, both the communication parameters and the UEP-NC scheme are jointly optimized by the proposed resource allocation framework. Numerical results show that the proposed allocation framework can significantly increase the service coverage when compared to a conventional Multi-rate Transmission (MrT) strategy.Comment: Proc. of IEEE ICC 2015 - Mobile and Wireless Networking Symposium, to appea

    CASPR: Judiciously Using the Cloud for Wide-Area Packet Recovery

    Full text link
    We revisit a classic networking problem -- how to recover from lost packets in the best-effort Internet. We propose CASPR, a system that judiciously leverages the cloud to recover from lost or delayed packets. CASPR supplements and protects best-effort connections by sending a small number of coded packets along the highly reliable but expensive cloud paths. When receivers detect packet loss, they recover packets with the help of the nearby data center, not the sender, thus providing quick and reliable packet recovery for latency-sensitive applications. Using a prototype implementation and its deployment on the public cloud and the PlanetLab testbed, we quantify the benefits of CASPR in providing fast, cost effective packet recovery. Using controlled experiments, we also explore how these benefits translate into improvements up and down the network stack

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Reliable Video Streaming over mmWave with Multi Connectivity and Network Coding

    Full text link
    The next generation of multimedia applications will require the telecommunication networks to support a higher bitrate than today, in order to deliver virtual reality and ultra-high quality video content to the users. Most of the video content will be accessed from mobile devices, prompting the provision of very high data rates by next generation (5G) cellular networks. A possible enabler in this regard is communication at mmWave frequencies, given the vast amount of available spectrum that can be allocated to mobile users; however, the harsh propagation environment at such high frequencies makes it hard to provide a reliable service. This paper presents a reliable video streaming architecture for mmWave networks, based on multi connectivity and network coding, and evaluates its performance using a novel combination of the ns-3 mmWave module, real video traces and the network coding library Kodo. The results show that it is indeed possible to reliably stream video over cellular mmWave links, while the combination of multi connectivity and network coding can support high video quality with low latency.Comment: To be presented at the 2018 IEEE International Conference on Computing, Networking and Communications (ICNC), March 2018, Maui, Hawaii, USA (invited paper). 6 pages, 4 figure
    corecore