487 research outputs found

    Exploration of the Disambiguation of Amino Acid Types to Chi-1 Rotamer Types in Protein Structure Prediction and Design

    Full text link
    A protein’s global fold provide insight into function; however, function specificity is often detailed in sidechain orientation. Thus, determining the rotamer conformations is often crucial in the contexts of protein structure/function prediction and design. For all non-glycine and non-alanine types, chi-1 rotamers occupy a small number of discrete number of states. Herein, we explore the possibility of describing evolution from the perspective of the sidechains’ structure versus the traditional twenty amino acid types. To validate our hypothesis that this perspective is more crucial to our understanding of evolutionary relationships, we investigate its uses as evolutionary, substitution matrices for sequence alignments for fold recognition purposes and computational protein design with specific focus in designing beta sheet environments, where previous studies have been done on amino acid-types alone. Throughout this study, we also propose the concept of the “chi-1 rotamer sequence” that describes the chi-1 rotamer composition of a protein. We also present attempts to predict these sequences and real-value torsion angles from amino acid sequence information. First, we describe our developments of log-odds scoring matrices for sequence alignments. Log-odds substitution matrices are widely used in sequence alignments for their ability to determine evolutionary relationship between proteins. Traditionally, databases of sequence information guide the construction of these matrices which illustrates its power in discovering distant or weak homologs. Weak homologs, typically those that share low sequence identity (< 30%), are often difficult to identify when only using basic amino acid sequence alignment. While protein threading approaches have addressed this issue, many of these approaches include sequenced-based information or profiles guided by amino acid-based substitution matrices, namely BLOSUM62. Here, we generated a structural-based substitution matrix born by TM-align structural alignments that captures both the sequence mutation rate within same protein family folds and the chi-1 rotamer that represents each amino acid. These rotamer substitution matrices (ROTSUMs) discover new homologs and improved alignments in the PDB that traditional substitution matrices, based solely on sequence information, cannot identify. Certain tools and algorithms to estimate rotamer torsions angles have been developed but typically require either knowledge of backbone coordinates and/or experimental data to help guide the prediction. Herein, we developed a fragment-based algorithm, Rot1Pred, to determine the chi-1 states in each position of a given amino acid sequence, yielding a chi-1 rotamer sequence. This approach employs fragment matching of the query sequence to sequence-structure fragment pairs in the PDB to predict the query’s sidechain structure information. Real-value torsion angles were also predicted and compared against SCWRL4. Results show that overall and for most amino-acid types, Rot1Pred can calculate chi-1 torsion angles significantly closer to native angles compared to SCWRL4 when evaluated on I-TASSER generated model backbones. Finally, we’ve developed and explored chi-1-rotamer-based statistical potentials and evolutionary profiles constructed for de novo computational protein design. Previous analyses which aim to energetically describe the preference of amino acid types in beta sheet environments (parallel vs antiparallel packing or n- and c-terminal beta strand capping) have been performed with amino acid types although no explicit rotamer representation is given in their scoring functions. In our study, we construct statistical functions which describes chi-1 rotamer preferences in these environments and illustrate their improvement over previous methods. These specialized knowledge-based energy functions have generated sequences whose I-TASSER predicted models are structurally-alike to their input structures yet consist of low sequence identity.PHDChemical BiologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145951/1/jarrettj_1.pd

    Probabilistic protein homology modeling

    Get PDF
    Searching sequence databases and building 3D models for proteins are important tasks for biologists. When the structure of a query protein is given, its function can be inferred. However, experimental methods for structure prediction are both expensive and time consuming. Fully automatic homology modeling refers to building a 3D model for a query sequence from an alignment to related homologous proteins with known structure (templates) by a computer. Current prediction servers can provide accurate models within a few hours to days. Our group has developed HHpred, which is one of the top performing structure prediction servers in the field. In general, homology based structure modeling consists of four steps: (1) finding homologous templates in a database, (2) selecting and (3) aligning templates to the query, (4) building a 3D model based on the alignment. In part one of this thesis, we will present improvements of step (2) and (4). Specifically, homology modeling has been shown to work best when multiple templates are selected instead of only a single one. Yet, current servers are using rather ad-hoc approaches to combine information from multiple templates. We provide a rigorous statistical framework for multi-template homology modeling. Given an alignment, we employ Modeller to calculate the most probable structure for a query. The 3D model is obtained by optimally satisfying spatial restraints derived from the alignment and expressed as probability density functions. We find that the query’s atomic distance restraints can be accurately described by two-component Gaussian mixtures. Moreover, we derive statistical weights to quantify the redundancy among related templates. This allows us to apply the standard rules of probability theory to combine restraints from several templates. Together with a heuristic template selection strategy, we have implemented this approach within HHpred and could significantly improve model quality. Furthermore, we took part in CASP, a community wide competition for structure prediction, where we were ranked first in template based modeling and, at the same time, were more than 450 times faster than all other top servers. Homology modeling heavily relies on detecting and correctly aligning templates to the query sequence (step (1) and (3) from above). But remote homologies are difficult to detect and hard to align on a pure sequence level. Hence, modern tools are based on profiles instead of sequences. A profile summarizes the evolutionary history of a given sequence and consists of position specific amino acid probabilities for each residue. In addition to the similarity score between profile columns, most methods use extra terms that compare 1D structural properties such as secondary structure or solvent accessibility. These can be predicted from local profile windows. In the second part of this thesis, we develop a new score that is independent of any predefined structural property. For this purpose, we learn a library of 32 profile patterns that are most conserved in alignments of remotely homologous, structurally aligned proteins. Each so called “context state” in the library consists of a 13-residue sequence profile. We integrate the new context score into our Hmm-Hmm alignment tool HHsearch and improve especially the sensitivity and precision of difficult pairwise alignments significantly. Taken together, we introduced probabilistic methods to improve all four main steps in homology based structure prediction

    Template-Based Structure Prediction and Classification of Transcription Factors in \u3ci\u3eArabidopsis thaliana\u3c/i\u3e

    Get PDF
    Transcription factors (TFs) play important roles in plants. However, there is no systematic study of their structures and functions of most TFs in plants. Here, we performed template-based structure prediction for all TFs in Arabidopsis thaliana, with their full-length sequences as well as C-terminal and N-terminal regions. A total of 2,918 model structures were obtained with a high confidence score. We find that TF families employ only a smaller number of templates for DNA-binding domains (DBD) but a diverse number of templates for transcription regulatory domains (TRD). Although TF families are classified according to DBD, their sizes have a significant correlation with the number of unique non-DNA-binding templates employed in the family (Pearson correlation coefficient of 0.74). That is, the size of TF family is related to its functional diversity. Network analysis reveals new connections between TF families based on shared TRD or DBD templates; 81% TF families share DBD and 67% share TRD templates. Two large fully connected family clusters in this network are observed along with 69 island families. In addition, 25 genes with unknown functions are found to be DNA-binding and/or TF factors according to predicted structures. This work provides a global view of the classification of TFs based on their DBD or TRD templates, and hence, a deeper understanding of DNA-binding and regulatory functions from structural perspective. All structural models of TFs are deposited in the online database for public usage at http://sysbio.unl.edu/AthTF

    Template-Based Structure Prediction and Classification of Transcription Factors in \u3ci\u3eArabidopsis thaliana\u3c/i\u3e

    Get PDF
    Transcription factors (TFs) play important roles in plants. However, there is no systematic study of their structures and functions of most TFs in plants. Here, we performed template-based structure prediction for all TFs in Arabidopsis thaliana, with their full-length sequences as well as C-terminal and N-terminal regions. A total of 2,918 model structures were obtained with a high confidence score. We find that TF families employ only a smaller number of templates for DNA-binding domains (DBD) but a diverse number of templates for transcription regulatory domains (TRD). Although TF families are classified according to DBD, their sizes have a significant correlation with the number of unique non-DNA-binding templates employed in the family (Pearson correlation coefficient of 0.74). That is, the size of TF family is related to its functional diversity. Network analysis reveals new connections between TF families based on shared TRD or DBD templates; 81% TF families share DBD and 67% share TRD templates. Two large fully connected family clusters in this network are observed along with 69 island families. In addition, 25 genes with unknown functions are found to be DNA-binding and/or TF factors according to predicted structures. This work provides a global view of the classification of TFs based on their DBD or TRD templates, and hence, a deeper understanding of DNA-binding and regulatory functions from structural perspective. All structural models of TFs are deposited in the online database for public usage at http://sysbio.unl.edu/AthTF

    Mass & secondary structure propensity of amino acids explain their mutability and evolutionary replacements

    Get PDF
    Why is an amino acid replacement in a protein accepted during evolution? The answer given by bioinformatics relies on the frequency of change of each amino acid by another one and the propensity of each to remain unchanged. We propose that these replacement rules are recoverable from the secondary structural trends of amino acids. A distance measure between high-resolution Ramachandran distributions reveals that structurally similar residues coincide with those found in substitution matrices such as BLOSUM: Asn Asp, Phe Tyr, Lys Arg, Gln Glu, Ile Val, Met → Leu; with Ala, Cys, His, Gly, Ser, Pro, and Thr, as structurally idiosyncratic residues. We also found a high average correlation (\overline{R} R = 0.85) between thirty amino acid mutability scales and the mutational inertia (I X ), which measures the energetic cost weighted by the number of observations at the most probable amino acid conformation. These results indicate that amino acid substitutions follow two optimally-efficient principles: (a) amino acids interchangeability privileges their secondary structural similarity, and (b) the amino acid mutability depends directly on its biosynthetic energy cost, and inversely with its frequency. These two principles are the underlying rules governing the observed amino acid substitutions. © 2017 The Author(s)

    Protein Fold Recognition from Sequences using Convolutional and Recurrent Neural Networks

    Get PDF
    The identification of a protein fold type from its amino acid sequence provides important insights about the protein 3D structure. In this paper, we propose a deep learning architecture that can process protein residue-level features to address the protein fold recognition task. Our neural network model combines 1D-convolutional layers with gated recurrent unit (GRU) layers. The GRU cells, as recurrent layers, cope with the processing issues associated to the highly variable protein sequence lengths and so extract a fold-related embedding of fixed size for each protein domain. These embeddings are then used to perform the pairwise fold recognition task, which is based on transferring the fold type of the most similar template structure. We compare our model with several template-based and deep learning-based methods from the state-of-the-art. The evaluation results over the well-known LINDAHL and SCOP_TEST sets,along with a proposed LINDAHL test set updated to SCOP 1.75, show that our embeddings perform significantly better than these methods, specially at the fold level. Supplementary material, source code and trained models are available at http://sigmat.ugr.es/~amelia/CNN-GRU-RF+/

    New Methods to Improve Protein Structure Modeling

    Get PDF
    Proteins are considered the central compound necessary for life, as they play a crucial role in governing several life processes by performing the most essential biological and chemical functions in every living cell. Understanding protein structures and functions will lead to a significant advance in life science and biology. Such knowledge is vital for various fields such as drug development and synthetic biofuels production. Most proteins have definite shapes that they fold into, which are the most stable state they can adopt. Due to the fact that the protein structure information provides important insight into its functions, many research efforts have been conducted to determine the protein 3-dimensional structure from its sequence. The experimental methods for protein 3-dimensional structure determination are often time-consuming, costly, and even not feasible for some proteins. Accordingly, recent research efforts focus more and more on computational approaches to predict protein 3-dimensional structures. Template-based modeling is considered one of the most accurate protein structure prediction methods. The success of template-based modeling relies on correctly identifying one or a few experimentally determined protein structures as structural templates that are likely to resemble the structure of the target sequence as well as accurately producing a sequence alignment that maps the residues in the target sequence to those in the template. In this work, we aim at improving the template-based protein structure modeling by enhancing the correctness of identifying the most appropriate templates and precisely aligning the target and template sequences. Firstly, we investigate employing inter-residue contact score to measure the favorability of a target sequence fitting in the folding topology of a certain template. Secondly, we design a multi-objective alignment algorithm extending the famous Needleman-Wunsch algorithm to obtain a complete set of alignments yielding Pareto optimality. Then, we use protein sequence and structural information as objectives and generate the complete Pareto optimal front of alignments between target sequence and template. The alignments obtained enable one to analyze the trade-offs between the potentially conflicting objectives. These approaches lead to accuracy enhancement in template-based protein structure modeling

    eModel-BDB: a database of comparative structure models of drug-target interactions from the Binding Database

    Get PDF
    Background: The structural information on proteins in their ligand-bound conformational state is invaluable for protein function studies and rational drug design. Compared to the number of available sequences, not only is the repertoire of the experimentally determined structures of holo-proteins limited, these structures do not always include pharmacologically relevant compounds at their binding sites. In addition, binding affinity databases provide vast quantities of information on interactions between drug-like molecules and their targets, however, often lacking structural data. On that account, there is a need for computational methods to complement existing repositories by constructing the atomic-level models of drug-protein assemblies that will not be determined experimentally in the near future. Results: We created eModel-BDB, a database of  200,005 comparative models of drug-bound proteins based on   1,391,403 interaction data obtained from the Binding Database and the PDB library of 31 January 2017. Complex models in eModel-BDB were generated with a collection of the state-of-the-art techniques, including protein meta-threading, template-based structure modeling, refinement and binding site detection, and ligand similarity-based docking. In addition to a rigorous quality control maintained during dataset generation, a subset of weakly homologous models was selected for the retrospective validation against experimental structural data recently deposited to the Protein Data Bank. Validation results indicate that eModel-BDB contains models that are accurate not only at the global protein structure level but also with respect to the atomic details of bound ligands. Conclusions: Freely available eModel-BDB can be used to support structure-based drug discovery and repositioning, drug target identification, and protein structure determination
    corecore