1,774 research outputs found

    Deep learning methods for protein torsion angle prediction

    Get PDF
    Background: Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. Results: We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Conclusions: Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy

    DeepMood: Modeling Mobile Phone Typing Dynamics for Mood Detection

    Full text link
    The increasing use of electronic forms of communication presents new opportunities in the study of mental health, including the ability to investigate the manifestations of psychiatric diseases unobtrusively and in the setting of patients' daily lives. A pilot study to explore the possible connections between bipolar affective disorder and mobile phone usage was conducted. In this study, participants were provided a mobile phone to use as their primary phone. This phone was loaded with a custom keyboard that collected metadata consisting of keypress entry time and accelerometer movement. Individual character data with the exceptions of the backspace key and space bar were not collected due to privacy concerns. We propose an end-to-end deep architecture based on late fusion, named DeepMood, to model the multi-view metadata for the prediction of mood scores. Experimental results show that 90.31% prediction accuracy on the depression score can be achieved based on session-level mobile phone typing dynamics which is typically less than one minute. It demonstrates the feasibility of using mobile phone metadata to infer mood disturbance and severity.Comment: KDD 201

    Recent Developments in Deep Learning Applied to Protein Structure Prediction

    Get PDF
    Although many structural bioinformatics tools have been using neural network models for a long time, deep neural network (DNN) models have attracted considerable interest in recent years. Methods employing DNNs have had a significant impact in recent CASP experiments, notably in CASP12 and especially CASP13. In this article, we offer a brief introduction to some of the key principles and properties of DNN models and discuss why they are naturally suited to certain problems in structural bioinformatics. We also briefly discuss methodological improvements that have enabled these successes. Using the contact prediction task as an example, we also speculate why DNN models are able to produce reasonably accurate predictions even in the absence of many homologues for a given target sequence, a result which can at first glance appear surprising given the lack of input information. We end on some thoughts about how and why these types of models can be so effective, as well as a discussion on potential pitfalls. This article is protected by copyright. All rights reserved

    Memory-Augmented Graph Neural Networks: A Neuroscience Perspective

    Full text link
    Graph neural networks (GNNs) have been extensively used for many domains where data are represented as graphs, including social networks, recommender systems, biology, chemistry, etc. Recently, the expressive power of GNNs has drawn much interest. It has been shown that, despite the promising empirical results achieved by GNNs for many applications, there are some limitations in GNNs that hinder their performance for some tasks. For example, since GNNs update node features mainly based on local information, they have limited expressive power in capturing long-range dependencies among nodes in graphs. To address some of the limitations of GNNs, several recent works started to explore augmenting GNNs with memory for improving their expressive power in the relevant tasks. In this paper, we provide a comprehensive review of the existing literature of memory-augmented GNNs. We review these works through the lens of psychology and neuroscience, which has established multiple memory systems and mechanisms in biological brains. We propose a taxonomy of the memory GNN works, as well as a set of criteria for comparing the memory mechanisms. We also provide critical discussions on the limitations of these works. Finally, we discuss the challenges and future directions for this area

    Homology modeling in the time of collective and artificial intelligence

    Get PDF
    Homology modeling is a method for building protein 3D structures using protein primary sequence and utilizing prior knowledge gained from structural similarities with other proteins. The homology modeling process is done in sequential steps where sequence/structure alignment is optimized, then a backbone is built and later, side-chains are added. Once the low-homology loops are modeled, the whole 3D structure is optimized and validated. In the past three decades, a few collective and collaborative initiatives allowed for continuous progress in both homology and ab initio modeling. Critical Assessment of protein Structure Prediction (CASP) is a worldwide community experiment that has historically recorded the progress in this field. Folding@Home and Rosetta@Home are examples of crowd-sourcing initiatives where the community is sharing computational resources, whereas RosettaCommons is an example of an initiative where a community is sharing a codebase for the development of computational algorithms. Foldit is another initiative where participants compete with each other in a protein folding video game to predict 3D structure. In the past few years, contact maps deep machine learning was introduced to the 3D structure prediction process, adding more information and increasing the accuracy of models significantly. In this review, we will take the reader in a journey of exploration from the beginnings to the most recent turnabouts, which have revolutionized the field of homology modeling. Moreover, we discuss the new trends emerging in this rapidly growing field.O

    Applications of deep neural networks to protein structure prediction

    Get PDF
    Professor Yi Shang, Dissertation Advisor; Professor Dong Xu, Dissertation Co-advisor.Includes vita.Field of Study: Computer science."July 2018."Protein secondary structure, backbone torsion angle and other secondary structure features can provide useful information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this dissertation, several new deep neural network architectures are proposed for protein secondary structure prediction: deep inception-inside-inception (Deep3I) networks and deep neighbor residual (DeepNRN) networks for secondary structure prediction; deep residual inception networks (DeepRIN) for backbone torsion angle prediction; deep dense inception networks (DeepDIN) for beta turn prediction; deep inception capsule networks (DeepICN) for gamma turn prediction. Every tool was then implemented as a standalone tool integrated into MUFold package and freely available to research community. A webserver called MUFold-SS-Angle is also developed for protein property prediction. The input feature to those deep neural networks is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, HHBlits profile and/or predicted shape string. The deep architecture enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, the proposed deep neural architectures outperformed the best existing methods and other deep neural networks significantly: The proposed DeepNRN achieved highest Q8 75.33, 72.9, 70.8 on CASP 10, 11, 12 higher than previous state-of-the-art DeepCNF-SS with 71.8, 72.3, and 69.76. The proposed MUFold-SS (Deep3I) achieved highest Q8 76.47, 74.51, 72.1 on CASP 10, 11, 12. Compared to the recently released state-of-the-art tool, SPIDER3, DeepRIN reduced the Psi angle prediction error by more than 5 degrees and the Phi angle prediction error by more than 2 degrees on average. DeepDIN outperformed significantly BetaTPred3 in both two-class and nine-class beta turn prediction on benchmark BT426 and BT6376. DeepICN is the first application of using capsule network to biological sequence analysis and outperformed all previous gamma-turn predictors on benchmark GT320.Includes bibliographical references (pages 114-131)
    • …
    corecore