1,012 research outputs found

    In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks

    Get PDF
    Background Corynebacterium pseudotuberculosis (Cp) is a gram-positive bacterium that is classified into equi and ovis serovars. The serovar ovis is the etiological agent of caseous lymphadenitis, a chronic infection affecting sheep and goats, causing economic losses due to carcass condemnation and decreased production of meat, wool, and milk. Current diagnosis or treatment protocols are not fully effective and, thus, require further research of Cp pathogenesis. Results Here, we mapped known protein-protein interactions (PPI) from various species to nine Cp strains to reconstruct parts of the potential Cp interactome and to identify potentially essential proteins serving as putative drug targets. On average, we predict 16,669 interactions for each of the nine strains (with 15,495 interactions shared among all strains). An in silico sanity check suggests that the potential networks were not formed by spurious interactions but have a strong biological bias. With the inferred Cp networks we identify 181 essential proteins, among which 41 are non-host homologous. Conclusions The list of candidate interactions of the Cp strains lay the basis for developing novel hypotheses and designing according wet-lab studies. The non-host homologous essential proteins are attractive targets for therapeutic and diagnostic proposes. They allow for searching of small molecule inhibitors of binding interactions enabling modern drug discovery. Overall, the predicted Cp PPI networks form a valuable and versatile tool for researchers interested in Corynebacterium pseudotuberculosis

    Triangle network motifs predict complexes by complementing high-error interactomes with structural information

    Get PDF
    BackgroundA lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles.ResultsWe find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes.ConclusionGiven high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient for finding complexes involving most of the proteins and interactions in a typical PPIN

    Blueprint: descrição da complexidade da regulação metabólica através da reconstrução de modelos metabólicos e regulatórios integrados

    Get PDF
    Tese de doutoramento em Biomedical EngineeringUm modelo metabólico consegue prever o fenótipo de um organismo. No entanto, estes modelos podem obter previsões incorretas, pois alguns processos metabólicos são controlados por mecanismos reguladores. Assim, várias metodologias foram desenvolvidas para melhorar os modelos metabólicos através da integração de redes regulatórias. Todavia, a reconstrução de modelos regulatórios e metabólicos à escala genómica para diversos organismos apresenta diversos desafios. Neste trabalho, propõe-se o desenvolvimento de diversas ferramentas para a reconstrução e análise de modelos metabólicos e regulatórios à escala genómica. Em primeiro lugar, descreve-se o Biological networks constraint-based In Silico Optimization (BioISO), uma nova ferramenta para auxiliar a curação manual de modelos metabólicos. O BioISO usa um algoritmo de relação recursiva para orientar as previsões de fenótipo. Assim, esta ferramenta pode reduzir o número de artefatos em modelos metabólicos, diminuindo a possibilidade de obter erros durante a fase de curação. Na segunda parte deste trabalho, desenvolveu-se um repositório de redes regulatórias para procariontes que permite suportar a sua integração em modelos metabólicos. O Prokaryotic Transcriptional Regulatory Network Database (ProTReND) inclui diversas ferramentas para extrair e processar informação regulatória de recursos externos. Esta ferramenta contém um sistema de integração de dados que converte dados dispersos de regulação em redes regulatórias integradas. Além disso, o ProTReND dispõe de uma aplicação que permite o acesso total aos dados regulatórios. Finalmente, desenvolveu-se uma ferramenta computacional no MEWpy para simular e analisar modelos regulatórios e metabólicos. Esta ferramenta permite ler um modelo metabólico e/ou rede regulatória, em diversos formatos. Esta estrutura consegue construir um modelo regulatório e metabólico integrado usando as interações regulatórias e as ligações entre genes e proteínas codificadas no modelo metabólico e na rede regulatória. Além disso, esta estrutura suporta vários métodos de previsão de fenótipo implementados especificamente para a análise de modelos regulatórios-metabólicos.Genome-Scale Metabolic (GEM) models can predict the phenotypic behavior of organisms. However, these models can lead to incorrect predictions, as certain metabolic processes are controlled by regulatory mechanisms. Accordingly, many methodologies have been developed to extend the reconstruction and analysis of GEM models via the integration of Transcriptional Regulatory Network (TRN)s. Nevertheless, the perspective of reconstructing integrated genome-scale regulatory and metabolic models for diverse prokaryotes is still an open challenge. In this work, we propose several tools to assist the reconstruction and analysis of regulatory and metabolic models. We start by describing BioISO, a novel tool to assist the manual curation of GEM models. BioISO uses a recursive relation-like algorithm and Flux Balance Analysis (FBA) to evaluate and guide debugging of in silico phenotype predictions. Hence, this tool can reduce the number of artifacts in GEM models, decreasing the burdens of model refinement and curation. A state-of-the-art repository of TRNs for prokaryotes was implemented to support the reconstruction and integration of TRNs into GEM models. The ProTReND repository comprehends several tools to extract and process regulatory information available in several resources. More importantly, this repository contains a data integration system to unify the regulatory data into standardized TRNs at the genome scale. In addition, ProTReND contains a web application with full access to the regulatory data. Finally, we have developed a new modeling framework to define, simulate and analyze GEnome-scale Regulatory and Metabolic (GERM) models in MEWpy. The GERM model framework can read a GEM model, as well as a TRN from different file formats. This framework assembles a GERM model using the regulatory interactions and Genes-Proteins-Reactions (GPR) rules encoded into the GEM model and TRN. In addition, this modeling framework supports several methods of phenotype prediction designed for regulatory-metabolic models.I would like to thank Fundação para a Ciência e Tecnologia for the Ph.D. studentship I was awarded with (SFRH/BD/139198/2018)

    The evolutionary dynamics of protein-protein interaction networks inferred from the reconstruction of ancient networks

    Get PDF
    Cellular functions are based on the complex interplay of proteins, therefore the structure and dynamics of these protein-protein interaction (PPI) networks are the key to the functional understanding of cells. In the last years, large-scale PPI networks of several model organisms were investigated. Methodological improvements now allow the analysis of PPI networks of multiple organisms simultaneously as well as the direct modeling of ancestral networks. This provides the opportunity to challenge existing assumptions on network evolution. We utilized present-day PPI networks from integrated datasets of seven model organisms and developed a theoretical and bioinformatic framework for studying the evolutionary dynamics of PPI networks. A novel filtering approach using percolation analysis was developed to remove low confidence interactions based on topological constraints. We then reconstructed the ancient PPI networks of different ancestors, for which the ancestral proteomes, as well as the ancestral interactions, were inferred. Ancestral proteins were reconstructed using orthologous groups on different evolutionary levels. A stochastic approach, using the duplication-divergence model, was developed for estimating the probabilities of ancient interactions from today's PPI networks. The growth rates for nodes, edges, sizes and modularities of the networks indicate multiplicative growth and are consistent with the results from independent static analysis. Our results support the duplication-divergence model of evolution and indicate fractality and multiplicative growth as general properties of the PPI network structure and dynamics

    Protein-protein interactions and metabolic pathways reconstruction of Caenorhabditis elegans

    Get PDF
    Metabolic networks are the collections of all cellular activities taking place in a living cell and all the relationships among biological elements of the cell including genes, proteins, enzymes, metabolites, and reactions. They provide a better understanding of cellular mechanisms and phenotypic characteristics of the studied organism. In order to reconstruct a metabolic network, interactions among genes and their molecular attributes along with their functions must be known. Using this information, proteins are distributed among pathways as sub-networks of a greater metabolic network. Proteins which carry out various steps of a biological process operate in same pathway.The metabolic network of Caenorhabditis elegans was reconstructed based on current genomic information obtained from the KEGG database, and commonly found in SWISS-PROT and WormBase. Assuming proteins operating in a pathway are interacting proteins, currently available protein-protein interaction map of the studied organism was assembled. This map contains all known protein-protein interactions collected from various sources up to the time. Topology of the reconstructed network was briefly studied and the role of key enzymes in the interconnectivity of the network was analysed. The analysis showed that the shortest metabolic paths represent the most probable routes taken by the organism where endogenous sources of nutrient are available to the organism. Nonetheless, there are alternate paths to allow the organism to survive under extraneous variations. Signature content information of proteins was utilized to reveal protein interactions upon a notion that when two proteins share signature(s) in their primary structures, the two proteins are more likely to interact. The signature content of proteins was used to measure the extent of similarity between pairs of proteins based on binary similarity score. Pairs of proteins with a binary similarity score greater than a threshold corresponding to confidence level 95% were predicted as interacting proteins. The reliability of predicted pairs was statistically analyzed. The sensitivity and specificity analysis showed that the proposed approach outperformed maximum likelihood estimation (MLE) approach with a 22% increase in area under curve of receiving operator characteristic (ROC) when they were applied to the same datasets. When proteins containing one and two known signatures were removed from the protein dataset, the area under curve (AUC) increased from 0.549 to 0.584 and 0.655, respectively. Increase in the AUC indicates that proteins with one or two known signatures do not provide sufficient information to predict robust protein-protein interactions. Moreover, it demonstrates that when proteins with more known signatures are used in signature profiling methods the overlap with experimental findings will increase resulting in higher true positive rate and eventually greater AUC. Despite the accuracy of protein-protein interaction methods proposed here and elsewhere, they often predict true positive interactions along with numerous false positive interactions. A global algorithm was also proposed to reduce the number of false positive predicted protein interacting pairs. This algorithm relies on gene ontology (GO) annotations of proteins involved in predicted interactions. A dataset of experimentally confirmed protein pair interactions and their GO annotations was used as a training set to train keywords which were able to recover both their source interactions (training set) and predicted interactions in other datasets (test sets). These keywords along with the cellular component annotation of proteins were employed to set a pair of rules that were to be satisfied by any predicted pair of interacting proteins. When this algorithm was applied to four predicted datasets obtained using phylogenetic profiles, gene expression patterns, chance co-occurrence distribution coefficient, and maximum likelihood estimation for S. cerevisiae and C. elegans, the improvement in true positive fractions of the datasets was observed in a magnitude of 2-fold to 10-fold depending on the computational method used to create the dataset and the available information on the organism of interest. The predicted protein-protein interactions were incorporated into the prior reconstructed metabolic network of C. elegans, resulting in 1024 new interactions among 94 metabolic pathways. In each of 1024 new interactions one unknown protein was interacting with a known partner found in the reconstructed metabolic network. Unknown proteins were characterized based on the involvement of their known partners. Based on the binary similarity scores, the function of an uncharacterized protein in an interacting pair was defined according to its known counterpart whose function was already specified. With the incorporation of new predicted interactions to the metabolic network, an expanded version of that network was resulted with 27% increase in the number of known proteins involved in metabolism. Connectivity of proteins in protein-protein interaction map changed from 42 to 34 due to the increase in the number of characterized proteins in the network

    Automation of gene assignments to metabolic pathways using high-throughput expression data

    Get PDF
    BACKGROUND: Accurate assignment of genes to pathways is essential in order to understand the functional role of genes and to map the existing pathways in a given genome. Existing algorithms predict pathways by extrapolating experimental data in one organism to other organisms for which this data is not available. However, current systems classify all genes that belong to a specific EC family to all the pathways that contain the corresponding enzymatic reaction, and thus introduce ambiguity. RESULTS: Here we describe an algorithm for assignment of genes to cellular pathways that addresses this problem by selectively assigning specific genes to pathways. Our algorithm uses the set of experimentally elucidated metabolic pathways from MetaCyc, together with statistical models of enzyme families and expression data to assign genes to enzyme families and pathways by optimizing correlated co-expression, while minimizing conflicts due to shared assignments among pathways. Our algorithm also identifies alternative ("backup") genes and addresses the multi-domain nature of proteins. We apply our model to assign genes to pathways in the Yeast genome and compare the results for genes that were assigned experimentally. Our assignments are consistent with the experimentally verified assignments and reflect characteristic properties of cellular pathways. CONCLUSION: We present an algorithm for automatic assignment of genes to metabolic pathways. The algorithm utilizes expression data and reduces the ambiguity that characterizes assignments that are based only on EC numbers

    Network-based identification of driver pathways in clonal systems

    Get PDF
    Highly ethanol-tolerant bacteria for the production of biofuels, bacterial pathogenes which are resistant to antibiotics and cancer cells are examples of phenotypes that are of importance to society and are currently being studied. In order to better understand these phenotypes and their underlying genotype-phenotype relationships it is now commonplace to investigate DNA and expression profiles using next generation sequencing (NGS) and microarray techniques. These techniques generate large amounts of omics data which result in lists of genes that have mutations or expression profiles which potentially contribute to the phenotype. These lists often include a multitude of genes and are troublesome to verify manually as performing literature studies and wet-lab experiments for a large number of genes is very time and resources consuming. Therefore, (computational) methods are required which can narrow these gene lists down by removing generally abundant false positives from these lists and can ideally provide additional information on the relationships between the selected genes. Other high-throughput techniques such as yeast two-hybrid (Y2H), ChIP-Seq and Chip-Chip but also a myriad of small-scale experiments and predictive computational methods have generated a treasure of interactomics data over the last decade, most of which is now publicly available. By combining this data into a biological interaction network, which contains all molecular pathways that an organisms can utilize and thus is the equivalent of the blueprint of an organisms, it is possible to integrate the omics data obtained from experiments with these biological interaction networks. Biological interaction networks are key to the computational methods presented in this thesis as they enables methods to account for important relations between genes (and gene products). Doing so it is possible to not only identify interesting genes but also to uncover molecular processes important to the phenotype. As the best way to analyze omics data from an interesting phenotype varies widely based on the experimental setup and the available data, multiple methods were developed and applied in the context of this thesis: In a first approach, an existing method (PheNetic) was applied to a consortium of three bacterial species that together are able to efficiently degrade a herbicide but none of the species are able to efficiently degrade the herbicide on their own. For each of the species expression data (RNA-seq) was generated for the consortium and the species in isolation. PheNetic identified molecular pathways which were differentially expressed and likely contribute to a cross-feeding mechanism between the species in the consortium. Having obtained proof-of-concept, PheNetic was adapted to cope with experimental evolution datasets in which, in addition to expression data, genomics data was also available. Two publicly available datasets were analyzed: Amikacin resistance in E. coli and coexisting ecotypes in E.coli. The results allowed to elicit well-known and newly found molecular pathways involved in these phenotypes. Experimental evolution sometimes generates datasets consisting of mutator phenotypes which have high mutation rates. These datasets are hard to analyze due to the large amount of noise (most mutations have no effect on the phenotype). To this end IAMBEE was developed. IAMBEE is able to analyze genomic datasets from evolution experiments even if they contain mutator phenotypes. IAMBEE was tested using an E. coli evolution experiment in which cells were exposed to increasing concentrations of ethanol. The results were validated in the wet-lab. In addition to methods for analysis of causal mutations and mechanisms in bacteria, a method for the identification of causal molecular pathways in cancer was developed. As bacteria and cancerous cells are both clonal, they can be treated similar in this context. The big differences are the amount of data available (many more samples are available in cancer) and the fact that cancer is a complex and heterogenic phenotype. Therefore we developed SSA-ME, which makes use of the concept that a causal molecular pathway has at most one mutation in a cancerous cell (mutual exclusivity). However, enforcing this criterion is computationally hard. SSA-ME is designed to cope with this problem and search for mutual exclusive patterns in relatively large datasets. SSA-ME was tested on cancer data from the TCGA PAN-cancer dataset. From the results we could, in addition to already known molecular pathways and mutated genes, predict the involvement of few rarely mutated genes.nrpages: 246status: publishe

    Improving co-evolution basedmethods for protein-protein interaction prediction

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 18-06-201
    • …
    corecore