10,610 research outputs found

    Multivariate small sample tests for two-way designs with applications to industrial statistics

    Get PDF
    In this paper, we present a novel nonparametric approach for multivariate analysis of two-way crossed factorial design based on NonParametric Combination applied to Synchronized Permutation tests. This nonparametric hypothesis testing procedure not only allows to overcome the shortcomings of MANOVA test like violation of assumptions such as multivariate normality or covariance homogeneity, but, in an extensive simulation study, reveals to be a powerful instrument both in case of small sample size and many response variables. We contextualize its application in the field of industrial experiments and we assume a linear additive model for the data set analysis. Indeed, the linear additive model interpretation well adapts to the industrial production environment because of the way control of production machineries is implemented. The case of small sample size reflects the frequent needs of practitioners in the industrial environment where there are constraints or limited resources for the experimental design. Furthermore, an increase in rejection rate can be observed under alternative hypothesis when the number of response variables increases with fixed number of observed units. This could lead to a strategical benefit considering that in many real problems it could be easier to collect more information on a single experimental unit than adding a new unit to the experimental design. An application to industrial thermoforming processes is useful to illustrate and highlight the benefits of the adoption of the herein presented nonparametric approach

    Testing for equivalence: an intersection-union permutation solution

    Full text link
    The notion of testing for equivalence of two treatments is widely used in clinical trials, pharmaceutical experiments,bioequivalence and quality control. It is essentially approached within the intersection-union (IU) principle. According to this principle the null hypothesis is stated as the set of effects lying outside a suitably established interval and the alternative as the set of effects lying inside that interval. The solutions provided in the literature are mostly based on likelihood techniques, which in turn are rather difficult to handle, except for cases lying within the regular exponential family and the invariance principle. The main goal of present paper is to go beyond most of the limitations of likelihood based methods, i.e. to work in a nonparametric setting within the permutation frame. To obtain practical solutions, a new IU permutation test is presented and discussed. A simple simulation study for evaluating its main properties, and three application examples are also presented.Comment: 21 pages, 2 figure

    A Distance-Based Test of Association Between Paired Heterogeneous Genomic Data

    Full text link
    Due to rapid technological advances, a wide range of different measurements can be obtained from a given biological sample including single nucleotide polymorphisms, copy number variation, gene expression levels, DNA methylation and proteomic profiles. Each of these distinct measurements provides the means to characterize a certain aspect of biological diversity, and a fundamental problem of broad interest concerns the discovery of shared patterns of variation across different data types. Such data types are heterogeneous in the sense that they represent measurements taken at very different scales or described by very different data structures. We propose a distance-based statistical test, the generalized RV (GRV) test, to assess whether there is a common and non-random pattern of variability between paired biological measurements obtained from the same random sample. The measurements enter the test through distance measures which can be chosen to capture particular aspects of the data. An approximate null distribution is proposed to compute p-values in closed-form and without the need to perform costly Monte Carlo permutation procedures. Compared to the classical Mantel test for association between distance matrices, the GRV test has been found to be more powerful in a number of simulation settings. We also report on an application of the GRV test to detect biological pathways in which genetic variability is associated to variation in gene expression levels in ovarian cancer samples, and present results obtained from two independent cohorts

    Adaptive Mantel Test for AssociationTesting in Imaging Genetics Data

    Full text link
    Mantel's test (MT) for association is conducted by testing the linear relationship of similarity of all pairs of subjects between two observational domains. Motivated by applications to neuroimaging and genetics data, and following the succes of shrinkage and kernel methods for prediction with high-dimensional data, we here introduce the adaptive Mantel test as an extension of the MT. By utilizing kernels and penalized similarity measures, the adaptive Mantel test is able to achieve higher statistical power relative to the classical MT in many settings. Furthermore, the adaptive Mantel test is designed to simultaneously test over multiple similarity measures such that the correct type I error rate under the null hypothesis is maintained without the need to directly adjust the significance threshold for multiple testing. The performance of the adaptive Mantel test is evaluated on simulated data, and is used to investigate associations between genetics markers related to Alzheimer's Disease and heatlhy brain physiology with data from a working memory study of 350 college students from Beijing Normal University
    • …
    corecore