9,284 research outputs found

    Enhancing Grid Reliability With Phasor Measurement Units

    Get PDF
    Over the last decades, great efforts and investments have been made to increase the integration level of renewable energy resources in power grids. The New York State has set the goal to achieve 70% renewable generations by 2030, and realize carbon neutrality by 2040 eventually. However, the increased level of uncertainty brought about by renewables makes it more challenging to maintain stable and robust power grid operation. In addition to renewable energy resources, the ever-increasing number of electric vehicles and active loads have further increased the uncertainties in power systems. All these factors challenge the way the power grids are operated, and thus ask for new solutions to maintain stable and reliable grids. To meet the emerging requirements, advanced metering infrastructures are being integrated into power grids that transform traditional grids into \u27\u27 smart grids . One example is the widely deployed phasor measurement units (PMUs), which enable generating time-synchronized measurements with high sampling frequency, and pave a new path to realize real-time monitoring and control in power grids. However,the massive data generated by PMUs raises the questions of how to efficiently utilize the obtained measurements to understand and control the present system. Additionally, to meet the communication requirements between the advanced meters, the connectivity of the cyber layer has become more sophisticated, and thus is exposed to more cyber-attacks than before. Therefore, to enhance the grid reliability with PMUs, robust and efficient grid monitoring and control methods are required. This dissertation focuses on three important aspects of improving grid reliability with PMUs: (1) power system event detection; (2) impact assessment regarding both steady-state and transient stability; and (3) impact mitigation. In this dissertation, a comprehensive introduction of PMUs in the wide-area monitoring system, and comparisons with the existing supervisory control and data acquisition (SCADA) systems are presented first. Next, a data-driven event detection method is developed for efficient event detection with PMU measurements. A text mining approach is utilized to extract event oscillation patterns and determine event types. To ensure the integrity of the received data, the developed detection method is further designed to identify the fake events, and thus is robust against cyber-threat. Once a real event is detected, it is critical to promptly understand the consequences of the event in both steady and dynamic states. Sometimes, a single system event, e.g., a transmission line fault, may cause subsequent failures that lead to a cascading failure in the grid. In the worst case, these failures can result in large-scale blackouts. To assess the risk of an event in steady state, a probabilistic cascading failure model is developed. With the real-time phasor measurements, the failure probability of each system component at a specific operating condition can be predicted. In terms of the dynamic state, a failure of a system component may cause generators to lose synchronism, which will damage the power plant and lead to a blackout. To predict the transient stability after an event, a predictive online transient stability assessment (TSA) tool is developed in this dissertation. With only one sample of the PMU voltage measurements, the status of the transient stability can be predicted within cycles. In addition to the impact detection and assessment, it is also critical to identify proper mitigations to alleviate the failures. In this dissertation, a data-driven model predictive control strategy is developed. As a parameter-based system model is vulnerable to topology errors, a data-driven model is developed to mimic the grid behavior. Rather than utilizing the system parameters to construct the grid model, the data-driven model only leverages the received phasor measurements to determine proper corrective actions. Furthermore, to be robust against cyber-attacks, a check-point protocol, where past stored trustworthy data can be used to amend the attacked data, is utilized. The overall objective of this dissertation is to efficiently utilize advanced PMUs to detect, assess, and mitigate system failure, and help improve grid reliability

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Passivity - Based Control and Stability Analysis for Hydro-Solar Power Systems

    Get PDF
    Los sistemas de energía modernos se están transformando debido a la inclusión de renovables no convencionales fuentes de energía como la generación eólica y fotovoltaica. A pesar de que estas fuentes de energía son buenas alternativas para el aprovechamiento sostenible de la energía, afectan el funcionamiento y la estabilidad del sistema de energía, debido a su naturaleza inherentemente estocástica y dependencia de las condiciones climáticas. Además, los parques solares y eólicos tienen una capacidad de inercia reducida que debe ser compensada por grandes generadores síncronos en sistemas hidro térmicos convencionales, o por almacenamiento de energía dispositivos. En este contexto, la interacción dinámica entre fuentes convencionales y renovables debe ser estudiado en detalle. Para 2030, el Gobierno de Colombia proyecta que el poder colombiano El sistema integrará en su matriz energética al menos 1,2 GW de generación solar fotovoltaica. Por esta razón, es necesario diseñar controladores robustos que mejoren la estabilidad en los sistemas de energía. Con alta penetración de generación fotovoltaica e hidroeléctrica. Esta disertación estudia nuevas alternativas para mejorar el sistema de potencia de respuesta dinámica durante y después de grandes perturbaciones usando pasividad control basado. Esto se debe a que los componentes del sistema de alimentación son inherentemente pasivos y permiten formulaciones hamiltonianas, explotando así las propiedades de pasividad de sistemas eléctricos. Las principales contribuciones de esta disertación son: una pasividad descentralizada basada control de los sistemas de control de turbinas hidráulicas para sistemas de energía de múltiples máquinas para estabilizar el rotor acelerar y regular el voltaje terminal de cada sistema de control de turbinas hidráulicas en el sistema como, así como un control basado en PI pasividad para las plantas solares fotovoltaicas

    Dynamic modeling and transient stability analysis of distributed generators in a microgrid system

    Get PDF
    Increasing the penetration level of distributed generation units as well as power electronic devices adds more complexity and variability to the dynamic behaviour of the microgrids. For such systems, studying the transient modelling and stability is essential. One of the major disadvantages of most studies on microgrid modelling is their excessive attention to the steady state period and the lack of attention to microgrid performance during the transient period. In most of the research works, the behaviour of different microgrid loads has not been studied. One of the mechanisms of power systems stability studies is the application of state space modelling. This paper presents a mathematical model for connected inverters in microgrid systems with many variations of operating conditions. Nonlineal tools, phase-plane trajectory analysis, and Lyapunov method were employed to evaluate the limits of small signal models. Based on the results of the present study, applying the model allows for the analysis of the system when subjected to a severe transient disturbance such as loss of large load or generation. Studying the transient stability of microgrid systems in the standalone utility grid is useful and necessary for improving the design of the microgrid’s architecture

    Advanced control techniques for modern inertia based inverters

    Get PDF
    ”In this research three artificial intelligent (AI)-based techniques are proposed to regulate the voltage and frequency of a grid-connected inverter. The increase in the penetration of renewable energy sources (RESs) into the power grid has led to the increase in the penetration of fast-responding inertia-less power converters. The increase in the penetration of these power electronics converters changes the nature of the conventional grid, in which the existing kinetic inertia in the rotating parts of the enormous generators plays a vital role. The concept of virtual inertia control scheme is proposed to make the behavior of grid connected inverters more similar to the synchronous generators, by mimicking the mechanical behavior of a synchronous generator. Conventional control techniques lack to perform optimally in nonlinear, uncertain, inaccurate power grids. Besides, the decoupled control assumption in conventional VSGs makes them nonoptimal in resistive grids. The neural network predictive controller, the heuristic dynamic programming, and the dual heuristic dynamic programming techniques are presented in this research to overcome the draw backs of conventional VSGs. The nonlinear characteristics of neural networks, and the online training enable the proposed methods to perform as robust and optimal controllers. The simulation and the experimental laboratory prototype results are provided to demonstrate the effectiveness of the proposed techniques”--Abstract, page iv

    Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach

    Get PDF
    The active and reactive power conditioning using superconducting magnetic energy storage (SMES) systems for low-voltage distribution networks via feedback nonlinear control is proposed in this paper. The SMES system is interconnected to ac grid using a pulsed-width modulated current source converter (PWM-CSC). The dynamical model of the system exhibits a nonlinear structure, which is eliminated by the application of a nonlinear feedback controller based of the expected behavior of the closed-loop system. The steady state analysis under time-domain reference frame to verify the stability properties on the proposed controller is used. The general control rules allow improving different objectives. The robustness and applicability of the proposed controller is tested considering unbalance and harmonic distortion in the voltage provided by the ac grid. It is also considered the possibility to use the SMES system with the proposed controller to compensate the active power oscillations of a wind-generator system. © 2019 The AuthorsDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland GovernmentThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia ( COLCIENCIAS ), by calling contest 727-2015
    corecore