1,829 research outputs found

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Assessing the Potential of Plug-in Electric Vehicles in Active Distribution Networks

    Get PDF
    A multi-objective optimization algorithm is proposed in this paper to increase the penetration level of renewable energy sources (RESs) in distribution networks by intelligent management of plug-in electric vehicle (PEV) storage. The proposed algorithm is defined to manage the reverse power flow (PF) from the distribution network to the upstream electrical system. Furthermore, a charging algorithm is proposed within the proposed optimization in order to assure PEV owner's quality of service (QoS). The method uses genetic algorithm (GA) to increase photovoltaic (PV) penetration without jeopardizing PEV owners' (QoS) and grid operating limits, such as voltage level of the grid buses. The method is applied to a part of the Danish low voltage (LV) grid to evaluate its effectiveness and capabilities. Different scenarios have been defined and tested using the proposed method. Simulation results demonstrate the capability of the algorithm in increasing solar power penetration in the grid up to 50%, depending on the PEV penetration level and the freedom of the system operator in managing the available PEV storage

    Solar Photovoltaic and Thermal Energy Systems: Current Technology and Future Trends

    Get PDF
    Solar systems have become very competitive solutions for residential, commercial, and industrial applications for both standalone and grid connected operations. This paper presents an overview of the current status and future perspectives of solar energy (mainly photovoltaic) technology and the required conversion systems. The focus in the paper is put on the current technology, installations challenges, and future expectations. Various aspects related to the global solar market, the photovoltaic (PV) modules cost and technology, and the power electronics converter systems are addressed. Research trends and recommendations for each of the PV system sectors are also discussed.Junta de Andalucía P11-TIC-7070Ministerio de Ciencia e Innovación TEC2016-78430-

    Facilitating higher photovoltaic penetration in residential distribution networks using demand side management and active voltage control

    Get PDF
    Abstract Future power networks are certain to have high penetrations of renewable distributed generation such as photovoltaics (PV). At times of high PV generation and low customer demand (e.g., summer), network voltage is likely to rise beyond limits mandated by grid codes resulting in a curtailment of PV generation, unless appropriate control means are used. This leads to a reduction in energy yield and consequently reduces the economic viability of PV systems. This work focuses on scenario‐based impact assessments underpinned by a net prosumer load forecasting framework as part of power system planning to aid sustainable energy policymaking. Based on use‐case scenarios, the efficacy of smart grid solutions demand side management (DSM) and Active Voltage Control in maximizing PV energy yield and therefore revenue returns for prosumers and avoided costs for distribution networks between a developed country (the UK) and developing country (India) is analyzed. The results showed that while DSM could be a preferred means because of its potential for deployment via holistic demand response schemes for India and similar developing nations, technically the combination of the weaker low voltage network with significantly higher solar resource meant that it is not effective in preventing PV energy curtailment

    Active integration of electric vehicles in the distribution network - theory, modelling and practice

    Get PDF

    Electric Vehicles Integrated with Renewable Energy Sources for Sustainable Mobility

    Get PDF
    Across the globe, governments have been tackling the concerning problem of air-polluting emissions by committing significant resources to improving air quality. Achieving the goal of air purification will require that both the private and public sectors invest in clean energy technology. It will also need a transition from conventional houses to smart houses and from conventional vehicles to electric vehicles (EVs). It will be necessary to integrate renewable energy sources (RESs) such as solar photovoltaics, wind energy systems and diverse varieties of bioenergies. In addition, there are opportunities for decarbonisation within the transportation sector itself. Paradoxically, it appears that the same transportation sector might also present an opportunity for a speedy decarbonisation. Statistics indicate that transportation is responsible for 14% of global greenhouse gas (GHG) emissions. However, there are numerous options for viable clean technology, including the plug-in electric vehicles (PEVs). There are indeed many technologies and strategies, which reduce transportation emissions such as public transportation, vehicle light weighing, start-stop trains, improved engine technology, fuel substitution and production improvement, hydrogen, power-to-gas, and natural gas heavy fleets. This work concentrates on EV adoption integrated with RES. Specifically, this chapter examines the feasibility of significantly reducing GHG emissions by integrating EVs with RESs for sustainable mobility

    A Review of Active Management for Distribution Networks: Current Status and Future Development Trends

    Get PDF
    Driven by smart distribution technologies, by the widespread use of distributed generation sources, and by the injection of new loads, such as electric vehicles, distribution networks are evolving from passive to active. The integration of distributed generation, including renewable distributed generation changes the power flow of a distribution network from unidirectional to bi-directional. The adoption of electric vehicles makes the management of distribution networks even more challenging. As such, an active network management has to be fulfilled by taking advantage of the emerging techniques of control, monitoring, protection, and communication to assist distribution network operators in an optimal manner. This article presents a short review of recent advancements and identifies emerging technologies and future development trends to support active management of distribution networks

    Power quality disturbance mitigation in grid connected photovoltaic distributed generation with plug-in hybrid electric vehicle

    Get PDF
    In the last twenty years, electric vehicles have gained significant popularity in domestic transportation. The introduction of fast charging technology forecasts increased the use of plug-in hybrid electric vehicle and electric vehicles (PHEVs). Reduced total harmonic distortion (THD) is essential for a distributed power generation system during the electric vehicle (EV) power penetration. This paper develops a combined controller for synchronizing photovoltaic (PV) to the grid and bidirectional power transfer between EVs and the grid. With grid synchronization of PV power generation, this paper uses two control loops. One controls EV battery charging and the other mitigates power quality disturbances. On the grid connected converter, a multicarrier space vector pulse width modulation approach (12-switch, three-phase inverter) is used to mitigate power quality disturbances. A Simulink model for the PV-EV-grid setup has been developed, for evaluating voltage and current THD percentages under linear and non-linear and PHEV load conditions and finding that the THD values are well within the IEEE 519 standards

    The energy center initiative at politecnico di torino: practical experiences on energy efficiency measures in the municipality of torino

    Get PDF
    Urban districts should evolve towards a more sustainable infrastructure and greener energy carriers. The utmost challenge is the smart integration and control, within the existing infrastructure, of new information and energy technologies (such as sensors, appliances, electric and thermal power and storage devices) that are able to provide multi-services based on multi-actors and multi and interchangeable energy carriers. In recent years, the Municipality of Torino represents an experimental scenario, in which practical experiences in the below-areas have taken place through a number of projects: 1. energy efficiency in building; 2. smart energy grids management and smart metering; 3. biowaste-to-energy: mixed urban/industrial waste management with enhanced energy recovery from biogas. This work provides an overview and update on the most interesting initiatives of smart energy management in the urban context of Torino, with an analysis and quantification of the advantages gained in terms of energy and environmental efficiency
    corecore