55 research outputs found

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    사람의 자연스러운 보행 동작 생성을 위한 물리 시뮬레이션 기반 휴머노이드 제어 방법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. 이제희.휴머노이드를 제어하여 사람의 자연스러운 이동 동작을 만들어내는 것은 컴퓨터그래픽스 및 로봇공학 분야에서 중요한 문제로 생각되어 왔다. 하지만, 이는 사람의 이동에서 구동기가 부족한 (underactuated) 특성과 사람의 몸의 복잡한 구조를 모방하고 시뮬레이션해야 한다는 점 때문에 매우 어려운 문제로 알려져왔다. 본 학위논문은 물리 시뮬레이션 기반 휴머노이드가 외부의 변화에 안정적으로 대응하고 실제 사람처럼 자연스럽고 다양한 이동 동작을 만들어내도록 하는 제어 방법을 제안한다. 우리는 실제 사람으로부터 얻을 수 있는 관찰 가능하고 측정 가능한 데이터를 최대한으로 활용하여 문제의 어려움을 극복했다. 우리의 접근 방법은 모션 캡처 시스템으로부터 획득한 사람의 모션 데이터를 활용하며, 실제 사람의 측정 가능한 물리적, 생리학적 특성을 복원하여 사용하는 것이다. 우리는 토크로 구동되는 이족 보행 모델이 다양한 스타일로 걸을 수 있도록 제어하는 데이터 기반 알고리즘을 제안한다. 우리의 알고리즘은 모션 캡처 데이터에 내재된 이동 동작 자체의 강건성을 활용하여 실제 사람과 같은 사실적인 이동 제어를 구현한다. 구체적으로는, 참조 모션 데이터를 재현하는 자연스러운 보행 시뮬레이션을 위한 관절 토크를 계산하게 된다. 알고리즘에서 가장 핵심적인 아이디어는 간단한 추종 제어기만으로도 참조 모션을 재현할 수 있도록 참조 모션을 연속적으로 조절하는 것이다. 우리의 방법은 모션 블렌딩, 모션 와핑, 모션 그래프와 같은 기존에 존재하는 데이터 기반 기법들을 이족 보행 제어에 활용할 수 있게 한다. 우리는 보다 사실적인 이동 동작을 생성하기 위해 사람의 몸을 세부적으로 모델링한, 근육에 의해 관절이 구동되는 인체 모델을 제어하는 이동 제어 시스템을 제안한다. 시뮬레이션에 사용되는 휴머노이드는 실제 사람의 몸에서 측정된 수치들에 기반하고 있으며 최대 120개의 근육을 가진다. 우리의 알고리즘은 최적의 근육 활성화 정도를 계산하여 시뮬레이션을 수행하며, 참조 모션을 충실히 재현하거나 혹은 새로운 상황에 맞게 모션을 적응시키기 위해 주어진 참조 모션을 수정하는 방식으로 동작한다. 우리의 확장가능한 알고리즘은 다양한 종류의 근골격 인체 모델을 최적의 근육 조합을 사용하며 균형을 유지하도록 제어할 수 있다. 우리는 다양한 스타일로 걷기 및 달리기, 모델의 변화 (근육의 약화, 경직, 관절의 탈구), 환경의 변화 (외력), 목적의 변화 (통증의 감소, 효율성의 최대화)에 대한 대응, 방향 전환, 회전, 인터랙티브하게 방향을 바꾸며 걷기 등과 같은 보다 난이도 높은 동작들로 이루어진 예제를 통해 우리의 접근 방법이 효율적임을 보였다.Controlling artificial humanoids to generate realistic human locomotion has been considered as an important problem in computer graphics and robotics. However, it has been known to be very difficult because of the underactuated characteristics of the locomotion dynamics and the complex human body structure to be imitated and simulated. In this thesis, we presents controllers for physically simulated humanoids that exhibit a rich set of human-like and resilient simulated locomotion. Our approach exploits observable and measurable data of a human to effectively overcome difficulties of the problem. More specifically, our approach utilizes observed human motion data collected by motion capture systems and reconstructs measured physical and physiological properties of a human body. We propose a data-driven algorithm to control torque-actuated biped models to walk in a wide range of locomotion skills. Our algorithm uses human motion capture data and realizes an human-like locomotion control facilitated by inherent robustness of the locomotion motion. Concretely, it takes reference motion and generates a set of joint torques to generate human-like walking simulation. The idea is continuously modulating the reference motion such that even a simple tracking controller can reproduce the reference motion. A number of existing data-driven techniques such as motion blending, motion warping, and motion graph can facilitate the biped control with this framework. We present a locomotion control system that controls detailed models of a human body with the musculotendon actuating process to create more human-like simulated locomotion. The simulated humanoids are based on measured properties of a human body and contain maximum 120 muscles. Our algorithm computes the optimal coordination of muscle activations and actively modulates the reference motion to fathifully reproduce the reference motion or adapt the motion to meet new conditions. Our scalable algorithm can control various types of musculoskeletal humanoids while seeking harmonious coordination of many muscles and maintaining balance. We demonstrate the strength of our approach with examples that allow simulated humanoids to walk and run in various styles, adapt to change of models (e.g., muscle weakness, tightness, joint dislocation), environments (e.g., external pushes), goals (e.g., pain reduction and efficiency maximization), and perform more challenging locomotion tasks such as turn, spin, and walking while steering its direction interactively.Contents Abstract i Contents iii List of Figures v 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Computer Graphics Perspective . . . . . . . . . . . . . . . . . 3 1.1.2 Robotics Perspective . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Biomechanics Perspective . . . . . . . . . . . . . . . . . . . . 7 1.2 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Previous Work 16 2.1 Biped Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Controllers with Optimization . . . . . . . . . . . . . . . . . . 18 2.1.2 Controllers with Motion Capture Data . . . . . . . . . . . . . 20 2.2 Simulation of Musculoskeletal Humanoids . . . . . . . . . . . . . . . 21 2.2.1 Simulation of Specic Body Parts . . . . . . . . . . . . . . . . 21 2.2.2 Simulation of Full-Body Models . . . . . . . . . . . . . . . . . 22 2.2.3 Controllers for Musculoskeletal Humanoids . . . . . . . . . . . 23 3 Data-Driven Biped Control 24 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Data-Driven Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1 Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Locomotion Control for Many-Muscle Humanoids 56 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Humanoid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1 Muscle Force Generation . . . . . . . . . . . . . . . . . . . . . 61 4.2.2 Muscle Force Transfer . . . . . . . . . . . . . . . . . . . . . . 64 4.2.3 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Muscle Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.3 Quadratic Programming Formulation . . . . . . . . . . . . . . 70 4.4 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 Conclusion 84 A Mathematical Definitions 88 A.1 Definitions of Transition Function . . . . . . . . . . . . . . . . . . . . 88 B Humanoid Models 89 B.1 Torque-Actuated Biped Models . . . . . . . . . . . . . . . . . . . . . 89 B.2 Many-Muscle Humanoid Models . . . . . . . . . . . . . . . . . . . . . 91 C Dynamics of Musculotendon Actuators 94 C.1 Contraction Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 94 C.2 Initial Muscle States . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Glossary for Medical Terms 99 Bibliography 102 초록 113Docto

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Motor control and strategy discovery for physically simulated characters

    Get PDF
    In physics-based character animation, motions are realized through control of simulated characters along with their interactions with the virtual environment. In this thesis, we study the problem of character control on two levels: joint-level motor control which transforms control signals to joint torques, and high-level motion control which outputs joint-level control signals given the current state of the character and the environment and the task objective. We propose a Modified Articulated-Body Algorithm (MABA) which achieves stable proportional-derivative (PD) low-level motor control with superior theoretical time complexity, practical efficiency and stability than prior implementations. We further propose a high-level motion control framework based on deep reinforcement learning (DRL) which enables the discovery of appropriate motion strategies without human demonstrations to complete a task objective. To facilitate the learning of realistic human motions, we propose a Pose Variational Autoencoder (P-VAE) to constrain the DRL actions to a subspace of natural poses. Our learning framework can be further combined with a sample-efficient Bayesian Diversity Search (BDS) algorithm and novel policy seeking to discover diverse strategies for tasks with multiple modes, such as various athletic jumping tasks

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Towards a framework for socially interactive robots

    Get PDF
    250 p.En las últimas décadas, la investigación en el campo de la robótica social ha crecido considerablemente. El desarrollo de diferentes tipos de robots y sus roles dentro de la sociedad se están expandiendo poco a poco. Los robots dotados de habilidades sociales pretenden ser utilizados para diferentes aplicaciones; por ejemplo, como profesores interactivos y asistentes educativos, para apoyar el manejo de la diabetes en niños, para ayudar a personas mayores con necesidades especiales, como actores interactivos en el teatro o incluso como asistentes en hoteles y centros comerciales.El equipo de investigación RSAIT ha estado trabajando en varias áreas de la robótica, en particular,en arquitecturas de control, exploración y navegación de robots, aprendizaje automático y visión por computador. El trabajo presentado en este trabajo de investigación tiene como objetivo añadir una nueva capa al desarrollo anterior, la capa de interacción humano-robot que se centra en las capacidades sociales que un robot debe mostrar al interactuar con personas, como expresar y percibir emociones, mostrar un alto nivel de diálogo, aprender modelos de otros agentes, establecer y mantener relaciones sociales, usar medios naturales de comunicación (mirada, gestos, etc.),mostrar personalidad y carácter distintivos y aprender competencias sociales.En esta tesis doctoral, tratamos de aportar nuestro grano de arena a las preguntas básicas que surgen cuando pensamos en robots sociales: (1) ¿Cómo nos comunicamos (u operamos) los humanos con los robots sociales?; y (2) ¿Cómo actúan los robots sociales con nosotros? En esa línea, el trabajo se ha desarrollado en dos fases: en la primera, nos hemos centrado en explorar desde un punto de vista práctico varias formas que los humanos utilizan para comunicarse con los robots de una maneranatural. En la segunda además, hemos investigado cómo los robots sociales deben actuar con el usuario.Con respecto a la primera fase, hemos desarrollado tres interfaces de usuario naturales que pretenden hacer que la interacción con los robots sociales sea más natural. Para probar tales interfaces se han desarrollado dos aplicaciones de diferente uso: robots guía y un sistema de controlde robot humanoides con fines de entretenimiento. Trabajar en esas aplicaciones nos ha permitido dotar a nuestros robots con algunas habilidades básicas, como la navegación, la comunicación entre robots y el reconocimiento de voz y las capacidades de comprensión.Por otro lado, en la segunda fase nos hemos centrado en la identificación y el desarrollo de los módulos básicos de comportamiento que este tipo de robots necesitan para ser socialmente creíbles y confiables mientras actúan como agentes sociales. Se ha desarrollado una arquitectura(framework) para robots socialmente interactivos que permite a los robots expresar diferentes tipos de emociones y mostrar un lenguaje corporal natural similar al humano según la tarea a realizar y lascondiciones ambientales.La validación de los diferentes estados de desarrollo de nuestros robots sociales se ha realizado mediante representaciones públicas. La exposición de nuestros robots al público en esas actuaciones se ha convertido en una herramienta esencial para medir cualitativamente la aceptación social de los prototipos que estamos desarrollando. De la misma manera que los robots necesitan un cuerpo físico para interactuar con el entorno y convertirse en inteligentes, los robots sociales necesitan participar socialmente en tareas reales para las que han sido desarrollados, para así poder mejorar su sociabilida

    Ankle-Actuated Human-Machine Interface for Walking in Virtual Reality

    Get PDF
    This thesis work presents design, implementation and experimental study of an impedance type ankle haptic interface for providing users with the immersive navigation experience in virtual reality (VR). The ankle platform enables the use of foot-tapping gestures to reproduce realistic walking experience in VR and to haptically render different types of walking terrains. The system is designed to be used by seated users allowing more comfort, causing less fatigue and motion sickness. The custom-designed ankle interface is composed of a single actuator-sensors system making it a cost-efficient solution for VR applications. The designed interface consists of a single degree of freedom actuated platform which can rotate around the ankle joint of the user. The platform is impedance controlled around the horizontal position by an electric motor and capstan transmission system. to perform walking in a virtual scene, a seated user is expected to perform walking gestures in form of ankle plantar-flexion and dorsiflexion movements causing the platform to tilt forward and backward. We present three algorithms for simulating the immersive locomotion of a VR avatar using the platform movement information. We also designed multiple impedance controllers to render haptic feedback for different virtual terrains during walking. We carried out experiments to understand how quickly users adapt to the interface, how well they can control their locomotion speed in VR, and how well they can distinguish different types of terrains presented through haptic feedback. We implemented qualitative questionnaires on the usability of the device and the task load of the experimental procedures. The experimental studies demonstrated that the interface can be easily used to navigate in VR and it is capable of rendering dynamic multi-layer complex terrains containing structures with different stiffness and brittleness properties
    corecore