1,031 research outputs found

    Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses

    Full text link
    Spiking neural networks (SNN) are artificial computational models that have been inspired by the brain's ability to naturally encode and process information in the time domain. The added temporal dimension is believed to render them more computationally efficient than the conventional artificial neural networks, though their full computational capabilities are yet to be explored. Recently, computational memory architectures based on non-volatile memory crossbar arrays have shown great promise to implement parallel computations in artificial and spiking neural networks. In this work, we experimentally demonstrate for the first time, the feasibility to realize high-performance event-driven in-situ supervised learning systems using nanoscale and stochastic phase-change synapses. Our SNN is trained to recognize audio signals of alphabets encoded using spikes in the time domain and to generate spike trains at precise time instances to represent the pixel intensities of their corresponding images. Moreover, with a statistical model capturing the experimental behavior of the devices, we investigate architectural and systems-level solutions for improving the training and inference performance of our computational memory-based system. Combining the computational potential of supervised SNNs with the parallel compute power of computational memory, the work paves the way for next-generation of efficient brain-inspired systems

    Multi-scale Evolutionary Neural Architecture Search for Deep Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) have received considerable attention not only for their superiority in energy efficient with discrete signal processing, but also for their natural suitability to integrate multi-scale biological plasticity. However, most SNNs directly adopt the structure of the well-established DNN, rarely automatically design Neural Architecture Search (NAS) for SNNs. The neural motifs topology, modular regional structure and global cross-brain region connection of the human brain are the product of natural evolution and can serve as a perfect reference for designing brain-inspired SNN architecture. In this paper, we propose a Multi-Scale Evolutionary Neural Architecture Search (MSE-NAS) for SNN, simultaneously considering micro-, meso- and macro-scale brain topologies as the evolutionary search space. MSE-NAS evolves individual neuron operation, self-organized integration of multiple circuit motifs, and global connectivity across motifs through a brain-inspired indirect evaluation function, Representational Dissimilarity Matrices (RDMs). This training-free fitness function could greatly reduce computational consumption and NAS's time, and its task-independent property enables the searched SNNs to exhibit excellent transferbility and scalability. Extensive experiments demonstrate that the proposed algorithm achieves state-of-the-art (SOTA) performance with shorter simulation steps on static datasets (CIFAR10, CIFAR100) and neuromorphic datasets (CIFAR10-DVS and DVS128-Gesture). The thorough analysis also illustrates the significant performance improvement and consistent bio-interpretability deriving from the topological evolution at different scales and the RDMs fitness function

    Adaptive Sparse Structure Development with Pruning and Regeneration for Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) are more biologically plausible and computationally efficient. Therefore, SNNs have the natural advantage of drawing the sparse structural plasticity of brain development to alleviate the energy problems of deep neural networks caused by their complex and fixed structures. However, previous SNNs compression works are lack of in-depth inspiration from the brain development plasticity mechanism. This paper proposed a novel method for the adaptive structural development of SNN (SD-SNN), introducing dendritic spine plasticity-based synaptic constraint, neuronal pruning and synaptic regeneration. We found that synaptic constraint and neuronal pruning can detect and remove a large amount of redundancy in SNNs, coupled with synaptic regeneration can effectively prevent and repair over-pruning. Moreover, inspired by the neurotrophic hypothesis, neuronal pruning rate and synaptic regeneration rate were adaptively adjusted during the learning-while-pruning process, which eventually led to the structural stability of SNNs. Experimental results on spatial (MNIST, CIFAR-10) and temporal neuromorphic (N-MNIST, DVS-Gesture) datasets demonstrate that our method can flexibly learn appropriate compression rate for various tasks and effectively achieve superior performance while massively reducing the network energy consumption. Specifically, for the spatial MNIST dataset, our SD-SNN achieves 99.51\% accuracy at the pruning rate 49.83\%, which has a 0.05\% accuracy improvement compared to the baseline without compression. For the neuromorphic DVS-Gesture dataset, 98.20\% accuracy with 1.09\% improvement is achieved by our method when the compression rate reaches 55.50\%
    • …
    corecore