1,494 research outputs found

    An Introduction to RNA Databases

    Full text link
    We present an introduction to RNA databases. The history and technology behind RNA databases is briefly discussed. We examine differing methods of data collection and curation, and discuss their impact on both the scope and accuracy of the resulting databases. Finally, we demonstrate these principals through detailed examination of four leading RNA databases: Noncode, miRBase, Rfam, and SILVA.Comment: 27 pages, 10 figures, 1 tables. Submitted as a chapter for "An introduction to RNA bioinformatics" to be published by "Methods in Molecular Biology

    MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data.

    Get PDF
    Transfer RNA fragments (tRFs) are an established class of constitutive regulatory molecules that arise from precursor and mature tRNAs. RNA deep sequencing (RNA-seq) has greatly facilitated the study of tRFs. However, the repeat nature of the tRNA templates and the idiosyncrasies of tRNA sequences necessitate the development and use of methodologies that differ markedly from those used to analyze RNA-seq data when studying microRNAs (miRNAs) or messenger RNAs (mRNAs). Here we present MINTmap (for MItochondrial and Nuclear TRF mapping), a method and a software package that was developed specifically for the quick, deterministic and exhaustive identification of tRFs in short RNA-seq datasets. In addition to identifying them, MINTmap is able to unambiguously calculate and report both raw and normalized abundances for the discovered tRFs. Furthermore, to ensure specificity, MINTmap identifies the subset of discovered tRFs that could be originating outside of tRNA space and flags them as candidate false positives. Our comparative analysis shows that MINTmap exhibits superior sensitivity and specificity to other available methods while also being exceptionally fast. The MINTmap codes are available through https://github.com/TJU-CMC-Org/MINTmap/ under an open source GNU GPL v3.0 license

    Gene autoregulation via intronic microRNAs and its functions

    Get PDF
    Background: MicroRNAs, post-transcriptional repressors of gene expression, play a pivotal role in gene regulatory networks. They are involved in core cellular processes and their dysregulation is associated to a broad range of human diseases. This paper focus on a minimal microRNA-mediated regulatory circuit, in which a protein-coding gene (host gene) is targeted by a microRNA located inside one of its introns. Results: Autoregulation via intronic microRNAs is widespread in the human regulatory network, as confirmed by our bioinformatic analysis, and can perform several regulatory tasks despite its simple topology. Our analysis, based on analytical calculations and simulations, indicates that this circuitry alters the dynamics of the host gene expression, can induce complex responses implementing adaptation and Weber's law, and efficiently filters fluctuations propagating from the upstream network to the host gene. A fine-tuning of the circuit parameters can optimize each of these functions. Interestingly, they are all related to gene expression homeostasis, in agreement with the increasing evidence suggesting a role of microRNA regulation in conferring robustness to biological processes. In addition to model analysis, we present a list of bioinformatically predicted candidate circuits in human for future experimental tests. Conclusions: The results presented here suggest a potentially relevant functional role for negative self-regulation via intronic microRNAs, in particular as a homeostatic control mechanism of gene expression. Moreover, the map of circuit functions in terms of experimentally measurable parameters, resulting from our analysis, can be a useful guideline for possible applications in synthetic biology.Comment: 29 pages and 7 figures in the main text, 18 pages of Supporting Informatio

    Intragenomic Matching Reveals a Huge Potential for miRNA-Mediated Regulation in Plants

    Get PDF
    microRNAs (miRNAs) are important post-transcriptional regulators, but the extent of this regulation is uncertain, both with regard to the number of miRNA genes and their targets. Using an algorithm based on intragenomic matching of potential miRNAs and their targets coupled with support vector machine classification of miRNA precursors, we explore the potential for regulation by miRNAs in three plant genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. We find that the intragenomic matching in conjunction with a supervised learning approach contains enough information to allow reliable computational prediction of miRNA candidates without requiring conservation across species. Using this method, we identify ∼1,200, ∼2,500, and ∼2,100 miRNA candidate genes capable of extensive base-pairing to potential target mRNAs in A. thaliana, P. trichocarpa, and O. sativa, respectively. This is more than five times the number of currently annotated miRNAs in the plants. Many of these candidates are derived from repeat regions, yet they seem to contain the features necessary for correct processing by the miRNA machinery. Conservation analysis indicates that only a few of the candidates are conserved between the species. We conclude that there is a large potential for miRNA-mediated regulatory interactions encoded in the genomes of the investigated plants. We hypothesize that some of these interactions may be realized under special environmental conditions, while others can readily be recruited when organisms diverge and adapt to new niches

    Leveraging big data resources and data integration in biology: applying computational systems analyses and machine learning to gain insights into the biology of cancers

    Get PDF
    Recently, many "molecular profiling" projects have yielded vast amounts of genetic, epigenetic, transcription, protein expression, metabolic and drug response data for cancerous tumours, healthy tissues, and cell lines. We aim to facilitate a multi-scale understanding of these high-dimensional biological data and the complexity of the relationships between the different data types taken from human tumours. Further, we intend to identify molecular disease subtypes of various cancers, uncover the subtype-specific drug targets and identify sets of therapeutic molecules that could potentially be used to inhibit these targets. We collected data from over 20 publicly available resources. We then leverage integrative computational systems analyses, network analyses and machine learning, to gain insights into the pathophysiology of pancreatic cancer and 32 other human cancer types. Here, we uncover aberrations in multiple cell signalling and metabolic pathways that implicate regulatory kinases and the Warburg effect as the likely drivers of the distinct molecular signatures of three established pancreatic cancer subtypes. Then, we apply an integrative clustering method to four different types of molecular data to reveal that pancreatic tumours can be segregated into two distinct subtypes. We define sets of proteins, mRNAs, miRNAs and DNA methylation patterns that could serve as biomarkers to accurately differentiate between the two pancreatic cancer subtypes. Then we confirm the biological relevance of the identified biomarkers by showing that these can be used together with pattern-recognition algorithms to infer the drug sensitivity of pancreatic cancer cell lines accurately. Further, we evaluate the alterations of metabolic pathway genes across 32 human cancers. We find that while alterations of metabolic genes are pervasive across all human cancers, the extent of these gene alterations varies between them. Based on these gene alterations, we define two distinct cancer supertypes that tend to be associated with different clinical outcomes and show that these supertypes are likely to respond differently to anticancer drugs. Overall, we show that the time has already arrived where we can leverage available data resources to potentially elicit more precise and personalised cancer therapies that would yield better clinical outcomes at a much lower cost than is currently being achieved

    A Logistic Model Tree Solution

    Get PDF
    Beretta, S., Castelli, M., Gonçalves, I., Kel, I., Giansanti, V., & Merelli, I. (2018). Improving eQTL Analysis Using a Machine Learning Approach for Data Integration: A Logistic Model Tree Solution. Journal of Computational Biology, 25(10), 1091-1105. DOI: 10.1089/cmb.2017.0167Expression quantitative trait loci (eQTL) analysis is an emerging method for establishing the impact of genetic variations (such as single nucleotide polymorphisms) on the expression levels of genes. Although different methods for evaluating the impact of these variations are proposed in the literature, the results obtained are mostly in disagreement, entailing a considerable number of false-positive predictions. For this reason, we propose an approach based on Logistic Model Trees that integrates the predictions of different eQTL mapping tools to produce more reliable results. More precisely, we employ a machine learning-based method using logistic functions to perform a linear regression able to classify the predictions of three eQTL analysis tools (namely, R/qtl, MatrixEQTL, and mRMR). Given the lack of a reference dataset and that computational predictions are not so easy to test experimentally, the performance of our approach is assessed using data from the DREAM5 challenge. The results show the quality of the aggregated prediction is better than that obtained by each single tool in terms of both precision and recall. We also performed a test on real data, employing genotypes and microRNA expression profiles from Caenorhabditis elegans, which proved that we were able to correctly classify all the experimentally validated eQTLs. These good results come both from the integration of the different predictions, and from the ability of this machine learning algorithm to find the best cutoff thresholds for each tool. This combination makes our integration approach suitable for improving eQTL predictions for testing in a laboratory, reducing the number of false-positive results.authorsversionpublishe

    Improving Kidney Tumor Detection Accuracy Using Hybrid U-Net Segmentation

    Get PDF
    Kidney cancer stands as a significant factor in cancer-related mortality, highlighting the critical importance of early and precise tumor detection This study introduces a computer-aided approach using the KiTS19 dataset and a hybrid U-Net architecture. Manual tumor segmentation is resource-intensive and prone to errors. Leveraging the hybrid U-Net, known for its proficiency in medical image analysis, we achieve precise tumor identification. Our method involves initial kidney and tumor segmentation in high-resolution CT images, followed by region of interest (ROI) generation and benign/malignant tumor classification. The assessment conducted on the KiTS19 dataset demonstrates encouraging outcomes, with Dice coefficients of 0.974 for kidney segmentation and 0.818 for tumor segmentation, accompanied by a tumor classification accuracy rate of 94.3%.The hybrid U-Net’s advanced feature extraction and spatial context awareness contribute to these outcomes. By streamlining diagnosis, our approach has the potential to significantly improve patient outcomes. The use of the KiTS19 dataset ensures robustness across various clinical cases and imaging modalities. This method represents a valuable advancement in computer-aided kidney tumor detection, promising to enhance patient care

    Chapter Integrative Systems Biology Resources and Approaches in Disease Analytics

    Get PDF
    Currently, our analytical competences are struggling to keep-up the pace of in-deep analysis of all generated large-scale data resultant of high-throughput omics platforms. While, a substantial effort was spent on methods enhancement regarding technical aspects across many detection omics platforms, the development of integrative down-stream approaches is still challenging. Systems biology has an immense applicability in the biomedical and pharmacological areas since the main goal of those focuses in the translation of measured outputs into potential markers of a Human ailment and/or to provide new compound leads for drug discovery. This approach would become more straightforward and realistic to use in standard analysis workflows if the collation of all available information of every component of a biological system was ensured into a single database framework, instead of search and fetch a single component at time across a scatter of databases resources. Here, we will describe several database resources, standalone and web-based tools applied in disease analytics workflows based in data-driven integration of outputs of multi-omic detection platforms
    corecore