67,185 research outputs found

    Impulse: building a smarter memory controller

    Get PDF
    Journal ArticleImpulse is a new memory system architecture that adds two important features to a traditional memory controller. First, Impulse supports application-specific optimizations through configurable physical address remapping. By remapping physical addresses, applications control how their data is accessed and cached, improving their cache and bus utilization. Second, Impulse supports prefetching at the memory controller, which can hide much of the latency of DRAM accesses. In this paper we describe the design of the Impulse architecture, and show how an Impulse memory system can be used to improve the performance of memory-bound programs. For the NAS conjugate gradient benchmark, Impulse improves performance by 67%. Because it requires no modification to processor, cache, or bus designs, Impulse can be adopted in conventional systems. In addition to scientific applications, we expect that Impulse will benefit regularly strided, memory-bound applications of commercial importance, such as database and multimedia programs

    The design and implementation of a multimedia storage server tosupport video-on-demand applications

    Get PDF
    In this paper we present the design and implementation of a client/server based multimedia architecture for supporting video-on-demand applications. We describe in detail the software architecture of the implementation along with the adopted buffering mechanism. The proposed multithreaded architecture obtains, on one hand, a high degree of parallelism at the server side, allowing both the disk controller and the network card controller work in parallel. On the other hand; at the client side, it achieves the synchronized playback of the video stream at its precise rate, decoupling this process from the reception of data through the network. Additionally, we have derived, under an engineering perspective, some services that a real-time operating system should offer to satisfy the requirements found in video-on-demand applications.This research has been supported by the Regional Research Plan of the Autonomus Community of Madrid under an F.P.I. research grant.Publicad

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM

    Two research contributions in 64-bit computing: Testing and Applications

    No full text
    Following the release of Windows 64-bit and Redhat Linux 64-bit operating systems (OS) in late April 2005, this is the one of the first 64-bit OS research project completed in a British university. The objective is to investigate (1) the increase/decrease in performance compared to 32-bit computing; (2) the techniques used to develop 64-bit applications; and (3) how 64-bit computing should be used in IT and research organizations to improve their work. This paper summarizes research discoveries for this investigation, including two major research contributions in (1) testing and (2) application development. The first contribution includes performance, stress, application, multiplatform, JDK and compatibility testing for AMD and Intel models. Comprehensive testing results reveal that 64-bit computing has a better performance in application performance, system performance and stress testing, but a worse performance in compatibility testing than the traditional 32-bit computing. A 64-bit dual-core processor has been tested and the results show that it performs better than a 64-bit single-core processor, but only in application that requires very high demands of CPU and memory consumption. The second contribution is .NET 1.1 64-bit implementations. Without additional troubleshooting, .NET 1.1 does not work on 64-bit Windows operating systems in stable ways. After stabilizing .NET environment, the next step is the application development, which is a dynamic repository with functions such as registration, download, login-logout, product submissions, database storage and statistical reports. The technology is based on Visual Studio .NET 2003, .NET 1.1 Framework with Service Pack 1, SQL Server 2000 with Service Pack 4 and IIS Server 6.0 on the Windows Server 2003 Enterprise x64 platform with Service Pack 1

    Design techniques for low-power systems

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low-power design and techniques to exploit them on the architecture of the system. We focus on: minimizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system including error control, system decomposition, communication and MAC protocols, and low-power short range networks

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies
    • 

    corecore